
Approximate Nearest Neighbor 
Search in Recommender Systems 

Yury Malkov



About me

PhD in laser physics (2015)

Interests:

● CV/NLP
● Similarity search
● Recommender systems (Twitter, Verse)



Rise of commercial vector search solutions

Finally ANN becomes mainstream!



Approximate Nearest Neighbor Search Solutions

Many matured methods and libraries
● HNSW 
● DiskANN and modifications
● IVFPQ, IVF-HNSW
● Scann, ngt, nvidia RAFT, song, cuhnsw…

HNSW IVF-HNSWDiskANN



Benchmarks

ann-benchmarks is very useful, 
but limited to dense L2 and 
cosine, single thread search vs 
ANN recall at million-scale.

Better, more diverse benchmarks 
are evolving (OOD, billion-scale, 
sparse)



Approximate nearest neighbor search applications



1. Recommender Systems 

● Typical goal is recommending an item 
for a user (search, home timeline, 
notifications).

● A lot of $$$, but not generalizable 
beyond a company due to reliance on 
counting/graph/collaborative data.

● Huge corpus (millions to trillions), 
inference cost is very important => 
multistage funnel with ANN only a part.

● Usually homegrown solutions/infra for 
CPU (e.g. Meta, Google, Snap, Pinterest, 
Verse, Twitter, Amazon, Microsoft). 

● Have issues with reproducibility.

Two tower architecture for candidate generation:



2. LLMs

LLMs had a spike of popularity 
with an introduction of ChatGPT.

Extremely generalizable. Likely 
will revolutionize RecSys with 
deep context understanding [1].

Known issues: 

● Limited vocabulary
● Bounded context length
● Hallucinations (lack of 

grounding)

[1] Chen, Zheng. "PALR: Personalization Aware LLMs for Recommendation." arXiv preprint arXiv:2305.07622 (2023).



2. LLM RAG (Retrieval Augmented Generation)

The most popular current 
application with LLM.

● Simple and 
human-interpretable 
alternative to finetuning in 
LLMs. 

● Adds a level of grounding 
for generated results.

● For some applications (e.g. 
user data), scale is less 
important compared to 
consistency and availability 
at streaming updates.



Tighter ANN <> ranking funnel integration



Typical Large-scale Recommender Systems

● ANN is the first part of 
multi-stage funnel with cascaded 
models. Later cascades use 
bruteforce on the previous 
stage output.

● Queries and items by design 
have usually have different 
nature and features and live in 
different incompatible spaces. 
Those are distilled to L2/cosine 
for ANN thus losing information.

● Huge corpus for videos (1M-1T), 
high cost. Needs dedicated 
engineers to maintain.

ANN + light model

Brute force + Heavy model

Brute force + Middle model



Using learnable (neural) distances

In a properly designed ML system, ranker is 
arguably the main component. 

● Why not apply ANN to the ranker? 

The problem is that queries and documents 
live in different spaces. 

HNSW (and some other graph algorithms) do 
not restrict the items to be in the same space 
only distances matter. But: how to construct 
the index if there is no item-item distance?



Using L2 distance for data vectors (SL2G)

Solution - Ignores queries. Just use 
L2 distance for index construction on 
raw vectors.

Use supplied neural distance during 
search.

Gives a speedup, though baselines 
are questionable.

Tan, Shulong, et al. "Fast item ranking under neural network based measures." Proceedings of the 13th International Conference on Web Search 
and Data Mining. 2020.



Using projections from the query space

Solution - Using distances from queries as a 
metric. Creates a simple surrogate metric 
that can be used for graph construction.

Works better than SL2G and two-tower.

1. Morozov, Stanislav, and Artem Babenko. Relevance Proximity Graphs for Fast Relevance Retrieval. arXiv preprint arXiv:1908.06887 
2. Бритвина, Е. В., Крылов, В. В., & Мальков, Ю. А. (2013). Алгоритм максимизации релевантности, использующий графовые модели данных. Труды НГТУ им. 

РЕ Алексеева, (2 (99)), 75-83.



Using Item-Query bipartite graph ranking 

Solution - Encoding the links through 
item-query ordering (connecting 
through queries that are closest to 
items).

Interesting approach, better than 
SL2G, but is not compared to 
projections (more direct vs discrete, 
needs a ton of queries).

Tan, Shulong, Weijie Zhao, and Ping Li. "Fast neural ranking on bipartite graph indices." Proceedings of the VLDB Endowment 15.4 (2021): 794-803.



Graph reranking solutions in text retrieval

Solution - Use text-based cross 
encoders (heavy ranker) on 
embedding-based ANN graph and 
seeds to improve the accuracy/speed.

1. MacAvaney, Sean, Nicola Tonellotto, and Craig Macdonald. "Adaptive re-ranking with a corpus graph." Proceedings of the 31st ACM International 
Conference on Information & Knowledge Management. 2022.

2. Kulkarni, Hrishikesh, et al. "Lexically-Accelerated Dense Retrieval." Proceedings of the 46th International ACM SIGIR Conference on Research and 
Development in Information Retrieval. 2023.



Funnel => Cascaded graph search

Instead of brute force search in later 
funnel stages we transfer the seeds, 
switching distance function during 
graph traversal.

The ranker can undo the recall errors 
in previous stages (which is impossible 
with the classical funnel).

Shown to be beneficial for retrieval 
with an embedding-based graph [3].

1. Chen, R., Liu, B., Zhu, H., Wang, Y., Li, Q., Ma, B., ... & Zheng, B. Approximate nearest neighbor search under neural similarity metric for large-scale 
recommendation. ACM 2022 (pp. 3013-3022).

2. Boytsov, L., Novak, D., Malkov, Yu., & Nyberg, E.. Off the Beaten Path: Let's Replace Term-Based Retrieval with k-NN Search. CIKM 2016
3. MacAvaney, Sean, Nicola Tonellotto, and Craig Macdonald. "Adaptive re-ranking with a corpus graph." Proceedings of the 31st ACM International 

Conference on Information & Knowledge Management. 2022.

query

query

Light distance (fast)

Heavy distance (slow)Distance switch



Other optimizations for recommender systems



ANN-aware training, binarization

[1] Nils Reimers’s presentation: https://www.youtube.com/watch?v=Abh3YCahyqU 
[2] QDrant binary embeddings test for adaV2 https://qdrant.tech/articles/binary-quantization/ 

Large embeddings are costly.

Training the model so that 
common compression 
methods do not degrade the 
performance that much.

Examples of compatible 
embeddings:

● Cohere [1]
● OpenAI AdaV2 [2]

https://www.youtube.com/watch?v=Abh3YCahyqU
https://qdrant.tech/articles/binary-quantization/


Dynamic early stopping criteria

Based on the local parameters (LID, graph structure), the stopping condition 
can be altered to save compute on simple samples and improve recall on 
complicated ones. 

1. Yang, Kaixiang, et al. "Tao: A Learning Framework for Adaptive Nearest Neighbor Search using Static Features Only." arXiv preprint 
arXiv:2110.00696 (2021).

2. Li, Conglong, et al. "Improving approximate nearest neighbor search through learned adaptive early termination." 2020 ACM SIGMOD



Estimating the ANN hyperparameters

Tuning the hyperparameters for algorithms 
might be hard, especially if the users don’t 
own the holistic ANN system, which is a 
real problem.

Optimal hyperparameters are a function of 
the dataset (e.g. LID, graph characteristics) 
and target characteristics.

In can be estimated from samples. 

Very little published work.



Thank you for the attention!


