Approximate Nearest Neighbor
Search in Recommender Systems

Yury Malkov

About me %
PAH 1V

PhD in laser physics (2015)
SAMSUNG

Interests:
e CV/NLP &3 Pinecone

e Similarity search
e Recommender systems (Twitter, Verse) V=RS=

@ OpenAl

Rise of commercial vector search solutions

3 Pinecone * zllliz

Finally ANN becomes mainstream!

AWS povector Il P Weaviate é redis

]

ORACLE
gdrant % ¢ elastic

" VectorDB

ll @ 9
AstrapB

Approximate Nearest Neighbor Search Solutions

Many matured methods and libraries

e HNSW

e DiskANN and modifications

e |VFPQ, IVF-HNSW

e Scann, ngt, nvidia RAFT, song, cuhnsw...

HNSW DiskANN IVF-HNSW

entry point

S22 - entry
| point

nearest
/ \ \ /o\ centroid
T

o chosen scope
IVF cells 7 Vi, (with nprobe == 1)

'A\"'% s¢A

Benchmarks

ann-benchmarks is very useful, ann-benchmarks | Publi

. . Benchmarks of approximate nearest neighbor libraries in Python
but limited to dense L2 and
cosine, single thread search vs
ANN recall at million-scale.

docker benchmark nearest-neighbors

@ Python w 4,233 ? 642 515 MIT License Updated last week

Better, more diverse benchmarks

are evolving (OQOD, billion-scale, NeurlPS'23 Competition Track:
Sparse) Big-ANN

Supported by & Microsoft 3 Pinecone W3 e zilliz

Approximate nearest neighbor search applications

Recommender Systems

Typical goal is recommending an item
for a user (search, home timeline,
notifications).

A lot of $$3$, but not generalizable
beyond a company due to reliance on
counting/graph/collaborative data.
Huge corpus (millions to trillions),
inference cost is very important =>
multistage funnel with ANN only a part.
Usually homegrown solutions/infra for
CPU (e.g. Meta, Google, Snap, Pinterest,
Verse, Twitter, Amazon, Microsoft).
Have issues with reproducibility.

Two tower architecture for candidate generation:

Sigmoid,
dot product

User Embeddings

Info about the user/

Iltem Embeddings

Info about the item

Ter_ms User/context : ,' Terms in ltem .
salient to foatas 0 : d ot feat :
the user feglures waoSCIpion calres g

\

Embeddings Embeddings of Embeddings
of items in terms in documents of terms in
user history in user history, or the document

terms searched by
the user.

2. LLMs

LLMs had a spike of popularity
with an introduction of ChatGPT.

Extremely generalizable. Likely
will revolutionize RecSys with
deep context understanding [1].

Known issues:

e Limited vocabulary
Bounded context length
Hallucinations (lack of
grounding)

across the road <EOS>
\ \ \ A
Decoder-Only Architecture
/[Decoder Block
[Decoder Block
3 Feed Forward Neural Network E
K[Masked Self-Attention]j

[Token and Positional Embedding]

the chicken walked

[1] Chen, Zheng. "PALR: Personalization Aware LLMs for Recommendation." arXiv preprint arXiv:2305.07622 (2023).

2. LLM RAG (Retrieval Augmented Generation)

The most popular current
application with LLM.

Retrieval augmentation
e Simple and

huma n_interpreta ble Who is the president of the US? —— (Lg:?azg[t;;) Joe Biden
alternative to finetuning in
LLMSs. Retriever

Knowledge can be
expanded & updated

(new domain, news, etc.)

e Adds a level of grounding
for generated results.

e For some applications (e.g. R e e i e A
user data), scale is less WiKIPEDIA Reteved document
important compared to
consistency and availability
at streaming updates.

Interpretability
(reference to source)

Joe Biden is the 46th and current
Memory ¢
%

Tighter ANN <> ranking funnel integration

Typical Large-scale Recommender Systems

e ANN is the first part of
multi-stage funnel with cascaded
models. Later cascades use
bruteforce on the previous
stage output.

e Queries and items by design
have usually have different
nature and features and live in
different incompatible spaces.
Those are distilled to L2/cosine =
for ANN thus losing information. a-

e Huge corpus for videos (1IM-1T), Recommended Pins
high cost. Needs dedicated
engineers to maintain.

Step 1: Candidate Generation ANN + light model

Brute force + Middle model

Brute force + Heavy model

Using learnable (neural) distances

In a properly designed ML system, ranker is
arguably the main component.

e Why not apply ANN to the ranker?

The problem is that queries and documents
live in different spaces.

HNSW (and some other graph algorithms) do
not restrict the items to be in the same space
only distances matter. But: how to construct
the index if there is no item-item distance?

Ranking Score

'O 0 0 00 @ @

Query Vector Base Vector

Using L2 distance for data vectors (SL2G)

Solution - Ignores queries. Just use
L2 distance for index construction on
raw vectors.

Use supplied neural distance during
search.

Gives a speedup, though baselines
are questionable.

Tan, Shulong, et al. "Fast item ranking under neural network based measures."

and Data Mining. 2020.

Matching Brore Matching Score

Matchi.ng Funcon ¢ I ______ Leam
represenaion | 00 /(0 QO %%% Voder”
Learnlngl%% ii%%i l____________f______.____

o’ FEL I ETD] (6576 e
et {500 {00000 O '6‘0’6’

....................................

Figure 1: Neural network based matching models: (a) repre-
sentation learning; (b) matching function learning.

- Yelp MLP-Concate top-10 _— Yelp MLP Em-Sum top-10
o —--S12G --5L2G
0.8 ——HNSW 0.8 ——HNSW

——ANNOY ——ANNOY

06 0.6
o
0.4 0.4
<C

0.2

o B + 0 !
0 100 200 300 400 500 0 100 200 300 400 500

IS -
P I’g

Proceedings of the 13th International Conference on Web Search

Using projections from the query space

RPG construction

SOIution - USing distances from queries as a We summarize the graph construction scheme more formally.

Let us have the item set S C V and the train query set
{q1,.-..,qn} The main parameter of our scheme is a dimen-

metriC. Creates a Simp|e Surrogate metric sionality of relevance vectors, which is denoted by d.

1. Select X — d queries from {qu, ..., gn }, which will be
used to construct the relevance vectors.

th at Ca n be used fo r g ra p h CO nStru Ctio n . 2. Compute the relevance vectors for items from S:
{Ti}ues,q(’)EX = {f(q(i)y“)}ues,q(z)ex
3. Build a similarity graph on S, using L, distance metric on

Works better than SL2G and two-tower. oo A e T g

— RPG+ — RPG —— Item-based graph —— Two-tower —— Top scored
Collections Video Pinterest
1.0
0.9 1.0
0.8 0.8 0.9
0.7 0.8
0.6
T 06 07
&
05 0:4 06 |
04 o 0.5 /
0.3 0.4 T
0.2 0:0 0.3
: 500 1000 1500 2000 2500 3000 2000 4000 6000 8000 10000 100 150 200 250 300 350 400 450 500
Number of model computations Number of model computations Number of model computations
1. Morozov, Stanislav, and Artem Babenko. Relevance Proximity Graphs for Fast Relevance Retrieval. arXiv preprint arXiv:1908.06887
2. BputBuHa, E. B., Kpbinos, B. B., & Manbkos, FO. A. (2013). AnroputmM MakcuMmsawumm peneBaHTHOCTU, UCMONb3YLWuiA rpadpoBble Moaeny AaHHbIX. Tpydsl HITY um.

PE Anekceesa, (2 (99)), 75-83.

Using Item-Query bipartite graph ranking

M Node 1

Solution - Encoding the links through Rank 3 Q M

. . . D d
item-query ordering (connecting - o 4 4’ -

. —
through queries that are closest to Q > ‘ Q = % Node
. Rank 2 ,
|tem5). M - M Node 3

Queries Base Data Queries Base Data

Interesting approach, better than (@) (b)
SL2G, but is not com pa red to Figure 3: Illustrations for edge selection methods: (a) con-

nect to top M candidates. (b) connect to diverse candidates

projections (more direct vs discrete, by-two-hop edge selection.

needs a ton of queries).

Tan, Shulong, Weijie Zhao, and Ping Li. "Fast neural ranking on bipartite graph indices." Proceedings of the VLDB Endowment 15.4 (2021): 794-803.

Graph reranking solutions in text retrieval

Retrieval
Results (R,)

seeds updates
LE R R R RN R NEIIRENERENERRENRRNENNERBERHESRBESHRICERRERSERSENRSEH;.HE;RRERBESR' §BEJRLRES™

& uses
Re-Ranking) Samples ® Scorer yields Scored
Pool (P) batch Batch (B)
updates @ uses
GAR

uses

Solution - Use text-based cross
encoders (heavy ranker) on
embedding-based ANN graph and
seeds to improve the accuracy/speed.

@ Retriever

Corpus Index

| DL19 ~4ms DL19 ~8ms | Corpus Graph

Method | nDCG R@1k nDCG R@1k | :B:e;:e:at.l:n:ll-rs-:a-n:ﬂ:lg t-’u-dlgit-rp;a-cie-d- EEEEEEEEE NSNS EEEEEEEEEEEER
TAS-B (Exh.) | o715 0.842 0.715 0.842 |

Figure 1: Overview of GAR. Traditional re-ranking exclu-
IVF [I] 0.374 0.414 0.474 0.536
ScaNN [S] 0475 0519 053 05% sively scores results seeded by the retriever. GAR (in green)
HNSW - N 0.614 0.707 .
GAR [G[]H] o555t oess 0758 adapts the re-ranking pool after each batch based on the
Re-Ranking [R] 0.589 0605 0684 0755 computed scores and a pre-computed graph of the corpus.

: IS IS ISH ISH
Proactive LADR | 500.690 £:0771 o730 5H0.850
Adaptive LADR - - DHozss [Ho.s72

1. MacAvaney, Sean, Nicola Tonellotto, and Craig Macdonald. "Adaptive re-ranking with a corpus graph." Proceedings of the 31st ACM International
Conference on Information & Knowledge Management. 2022.

2. Kulkarni, Hrishikesh, et al. "Lexically-Accelerated Dense Retrieval." Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2023.

Funnel => Cascaded graph search
Light distance (fast)

Instead of brute force search in later
funnel stages we transfer the seeds,
. . . query Dlst Heavy distance (slow)

switching distance function during SWItCh query
graph traversal. &\.

The ranker can undo the recall errors
in previous stages (which is impossible
with the classical funnel).

Shown to be beneficial for retrieval
with an embedding-based graph [3].

1. Chen, R,, Liu, B., Zhu, H., Wang, Y., Li, Q., Ma, B., ... & Zheng, B. Approximate nearest neighbor search under neural similarity metric for large-scale
recommendation. ACM 2022 (pp. 3013-3022).

Boytsov, L., Novak, D., Malkov, Yu., & Nyberg, E.. Off the Beaten Path: Let's Replace Term-Based Retrieval with k-NN Search. CIKM 2016

MacAvaney, Sean, Nicola Tonellotto, and Craig Macdonald. "Adaptive re-ranking with a corpus graph." Proceedings of the 31st ACM International
Conference on Information & Knowledge Management. 2022.

Other optimizations for recommender systems

ANN-aware training, binarization

Large embeddings are costly.

Training the model so that
common compression
methods do not degrade the
performance that much.

Examples of compatible
embeddings:

e Cohere[1]
e OpenAl AdaV2 [2]

Compression Aware Training

Normal Embedding Training

=)

Compression Aware Training

® cohere

Model

Bioasq-1M nDCG@10

Bioasq-1M Binary

nDCG@10
ES-large 64.0 39.6 (62%)
Cohere English v3 64.1 58.7 (92%)

[1] Nils Reimers’s presentation: https://www.youtube.com/watch?v=Abh3YCahygU
[2] QDrant binary embeddings test for adaV2 https://gdrant.tech/articles/binary-quantization/

https://www.youtube.com/watch?v=Abh3YCahyqU
https://qdrant.tech/articles/binary-quantization/

Dynamic early stopping criteria

Based on the local parameters (LID, graph structure), the stopping condition
can be altered to save compute on simple samples and improve recall on
complicated ones.

4096 5 I HNSW

AdaptNN
[JTao

-

S

N
1

- o 5 O

(b) Workflow of Tao |

N

o

>
1

Latency(ms)
R

N
o
1

I
1

Deep Sift Gist ImageNet Glove Msong Trevi
Dataset

Figure 8: Latency for plain HNSW, AdaptNN and Tao.

1. Yang, Kaixiang, et al. "Tao: A Learning Framework for Adaptive Nearest Neighbor Search using Static Features Only." arXiv preprint

arXiv:2110.00696 (2021).
2. Li, Conglong, et al. "Improving approximate nearest neighbor search through learned adaptive early termination." 2020 ACM SIGMOD

Estimating the ANN hyperparameters

Tuning the hyperparameters for algorithms
might be hard, especially if the users don’t
own the holistic ANN system, which is a
real problem.

[Query subset ‘ Item subset]

—_— ==

Features

Optimal hyperparameters are a function of

v

the dataset (e.g. LID, graph characteristics)

.. ML model Target recall/latency/speed
and target characteristics.

/

In can be estimated from samples.

Hyperparameters (M,
efConstruction, ef, ...)

Very little published work.

Thank you for the attention!

