
Background Our Index Results ParlayANN

IVF2 Index: Fusing Classic and Spatial Inverted
Indices for Fast Filtered ANNS

Ben Landrum

ParlayANN

December 16, 2023

Ben Landrum

University of Maryland

Magdalen Dobson Manohar

Carnegie Mellon University

Mazin Karjikar

University of Maryland

Laxman Dhulipala

University of Maryland
1 / 18



Background Our Index Results ParlayANN

Outline

Background

Our Index

Results

ParlayANN

2 / 18



Background Our Index Results ParlayANN

Approximate Nearest Neighbors Search

3 / 18



Background Our Index Results ParlayANN

Approximate Nearest Neighbors Search

The Classical ANNS Problem
Given:

• a query q

• a set of points P

• some distance function d

find a set of k points pi ∈ P that minimizes
∑

d(q, pi ).

4 / 18



Background Our Index Results ParlayANN

Filtered ANNS

5 / 18



Background Our Index Results ParlayANN

Filtered ANNS

Filtered ANNS
Given:

• a query q

• a set of points P

• some distance function d

• nf sets of points L = {l1, . . . lnf } where x ∈ li iff point x has
label i

• a predicate F which is a boolean combination of the elements
of L

find a set of k points pi ∈ F that minimizes
∑

d(q, pi ).

6 / 18



Background Our Index Results ParlayANN

Classic Inverted File Index

Documents

1: {. . . far better thing that I do . . . }
2: {Friends, Romans, countrymen . . . }
3: {. . . taste and decency . . . }
4: {. . .Fair is foul, and foul is fair . . . }
5: {. . . It is a truth universally . . . }
6: {. . . and throw the peel away . . . }

...

Inverted File Index

a: {5, . . . }
and: {3, 4, 6, . . . }

away: {6, . . . }
better: {1, . . . }

countrymen: {2, . . . }
decency: {3, . . . }

...

7 / 18



Background Our Index Results ParlayANN

IVF Index

8 / 18



Background Our Index Results ParlayANN

IVF Index

8 / 18



Background Our Index Results ParlayANN

IVF Index

8 / 18



Background Our Index Results ParlayANN

Ethos of the IVF2 Index

Many existing indices (e.g. IVF, LSH, kd/ball-tree, Annoy, etc.)
operate by partitioning the vector space.

The labels represent a useful partition

9 / 18



Background Our Index Results ParlayANN

IVF2 Overview

We build a classic inverted file index over the labels, indexing the
vectors associated with each label independently.

Large labels

For labels with many vectors, we build:

• An IVF index

• A (relatively) lightweight Vamana search graph

• A bitvector of length n allowing fast lookup of whether a
given vector is associated with the label

Small labels
For labels with few vectors, we just store the indices of the vectors
associated with the label.

10 / 18



Background Our Index Results ParlayANN

Single-Filter Query

We are given a query vector q and a single label l.

If l is a large label

We use the very fast Vamana search graph to find the k nearest
neighbors of q among the vectors associated with l in a classical
k-NN query.

If l is a small label
We exhaustively check the vectors associated with l.

11 / 18



Background Our Index Results ParlayANN

‘AND’ Query Approach

We are given a query vector q and two labels la and lb, where la
has fewer points associated with it than lb.
We want to restrict our search to as few candidates as
possible before doing expensive distance computations.
There are two natural ways to do this:

• Filter la’s vectors by membership in lb
• Get many likely candidates from each label, and then join the
two sets

12 / 18



Background Our Index Results ParlayANN

Filtering by Membership

If la is especially small and lb has a filter, we can filter la’s vectors
by membership in lb.

Advantages

• Each item is a single read from memory

• The results are exact

13 / 18



Background Our Index Results ParlayANN

Joining Two Sets

For each of the two labels, we want to fetch a large set of possible
candidates, and then take the intersection of their respective
candidate sets.

Large Labels

• Compare q to the representative points of the IVF index

• Collect up to some predetermined number of points from the
nearest partitions into a sorted list

Small Labels
Take the existing sorted array of points associated with the labels

14 / 18



Background Our Index Results ParlayANN

A Note on Cache Optimization

If you can order a batch of queries effectively, you can keep
relevant parts of the index in cache between queries.

This is difficult in classical ANNS.

Our approach makes this easy, and we see a speedup of ∼ 30%
from a principled sort on filters.

15 / 18



Background Our Index Results ParlayANN

BigANN Filter Track

• 10 million vectors

• 200,386 labels

• 100,000 queries

16 / 18



Background Our Index Results ParlayANN

BigANN Filter Track

17 / 18



Background Our Index Results ParlayANN

ParlayANN
• Highly optimized parallel implementations of ANN algorithms
• Built on parlaylib, a framework for fast and easy
shared-memory parallelism

Check us out at https://github.com/cmuparlay/ParlayANN
18 / 18

https://github.com/cmuparlay/parlaylib
https://github.com/cmuparlay/ParlayANN

	Background
	Our Index
	AND Queries

	Results
	ParlayANN

