<ANVIDIA.

—

Accelerating Vector Search with- RAPIDS RAFT

Summarizing the benefits, challenges, and possibilities with RAPIDS RAFT

Corey J. Nolet

About Me

e Past 5 years at Nvidia: Data scientist and
principal engineer on the RAPIDS ML team

e Lead engineering for vector search, machine
learning, and data mining primitives

e Prior to Nvidia: Built massive-scale exploratory
data science and real-time analytics platforms
for big-data and HPC environments in the
defense industry.

<ANVIDIA I

Agenda

What is RAPIDS RAFT?

Benchmarking Performance
o Price/Performance

Notable algorithms in RAFT
CAGRA

Release Roadmap

<ANVIDIA. I

What is RAPIDS RAFT?

RAPIDS RAFT Overview

Accelerated, Composable Building Blocks for ML & Vector Search

e RAFT contains ready-to-use APIs

and composable building blocks
o Sparse and dense matrix
operations, nearest neighbors,
clustering, iterative solvers, and
more...

e [Fastest Approximate and Exact

Nearest Neighbors
o Core ANN APIs: IVF-PQ, IVF-Flat,
CAGRA (graph-based)

e Friendly, consistent C++77 and
Python APIs with a header-only
library and Apache 2.0 license

RecSys LLM

Anomaly
Detection

App

Vector Database Technology Stack

Vector Databases

‘ Core ANN/ML APIs

‘ GPU Primitives

‘ RAFT
flee

<ANVIDIA I

https://github.com/rapidsai/raft

RAPIDS RAFT Overview

Toolbox of Accelerated, Composable Building Blocks for ML & Data Analytics

Vector Search Integrations

=) =

Vector Databases Open Source Libraries LLM applications Offline workflows

RAFT

Vector Search Algorithms
Brute-force, CAGRA, IVF-Flat, IVF-PQ

Cluster Distance
N e Solver
K-means, Single-linkage HAC, Pairwise Distance, 1-NN,
. Iterative solvers, combinatorial optim
Spectral clustering Kernel gramms, etc.
Stats Random Matrix/Linalg Sparse
Moments, Metrics Sampling BLAS, Matrix ops Sparse ops

<ANVIDIA I

RMM

Unifying memory management across the GPGPU ecosystem

e Framework for defining composable memory allocation resources

e Unlocks ability to build end-to-end workflows, comprised of different libraries, to share
memory and allocators

e Centralized memory management provides zero-copy interoperability across different
libraries

e Enables sharing a device memory pool across supported libraries in the ecosystem

e Working to bring RMM support to FAISS! https://github.com/rapidsai/rmm

wdask 2Numba ., cupy RAP)DS O PyTorch

o’
Yy '

<ANVIDIA I

A little background...

GPU-accelerated nearest neighbors at Nvidia

e 2018
o Nvidia announces RAPIDS for GPU-accelerated data science!
o RAPIDS cuML library starts using FAISS for nearest neighbors search on the GPU
m Nearest neighbors and pairwise distances are useful for many ML algorithms-
clustering, manifold learning, class imbalance, classification, pre-processing,
filtering
o 2021
o Nvidia joins Big-ann Benchmarks ‘21 competition and wins first place alongside Intel
o 2022
o RAPIDS open sources Big-ann Benchmarks implementation through RAFT library
m [Initial implementations include IVF-Flat, IVF-PQ, random ball cover, and
brute-force
o FAISS agrees to use RAFT as a back-end for GPU-accelerated vector search
e 2023
o RAPIDS introduces graph-based vector search algorithm CAGRA

<ANVIDIA I

Benchmarking

Methodology

Making a fair comparison between CPU and GPU

General-purpose CPU

General-purpose GPU

Parallelism/per-core trade-off

Limited parallelism but
faster pre-core

Massive parallelism but
slower per-core

Concurrency implementation

Threads

CUDA streams

Best when used for:

I/0 and fast general-purpose

Heavy compute and

operation massive parallelism
. Batching

Query performance Threading (and CUDA streams)
Build performance Threading Batching

GPUs excel at tasks that require high data throughput or low latency.

<ANVIDIA I

Methodology

Making a fair comparison between CPU and GPU

In general, we

e measure both latency (single-threaded one-at-a-time) and throughput (saturate
available hardware)

e compare CPU single-query at a time to GPU at different batch sizes (usually 1, 10, 100,
10k)

e don’t measure time to copy queries to device memory (on the order of single-digit
microseconds)

e always compare index build times based on achieved throughput/latency and recall
levels

e compare end-to-end walltime for both latency and throughput (to make sure we don’t
ignore CPU idle time)

<ANVIDIA I

Measuring index build times
Index build times for HNSW on Big-ANN 10M

Throughput vs Recall
By Index Build Times (Seconds)

564 1022 1249
500,000 -
400,000 - \
300,000 - \.
200,000 -
100,000 -
0 -
& 1817 2505 2582
f. 500,000 -
S 400,000-
"5 300,000 -
£ 200,000 -
5 100,000 -
0 =

Throughp

3414 4430
500,000 -

400,000 -
300,000 -
200,000 -
100,000 -
0- 1 1
06 07 08 09 10 06 07 08 09 1.0
Recall

BIGANN-10M; batch size 10; k=100

Which one’s the
most fair to report?

<ANVIDIA I

Measuring index build times
Index build times for HNSW on Big-ANN 10M

Throughput vs Recall
(Seconds)

Index Build Time © 564 o 1022 e 1249 e 1817 o 2505 ® 2582 o 3414 o 443(

500,000 -
) ®e o \\\
T—— 80%-89%
400,000 -
o -
w0 o — 1 |
S % e —— 90%-94%
< 300,000- .
g y T 0 0
2 200,000 - ‘) 95%-98%
[e]
= * e,
100,000 - 1™ - T 99%+
i 8
b |
" 1
0.6 07 0% TS ro

Recall
BIGANN-10M; batch size 10; k=100

<ANVIDIA. I

Measuring index build times
Index build times for HNSW on Big-ANN 10M

Index Build Times
BIGANN (10M; 128 Dim; k=100)

@ CAGRA [l HNSWLIB
Average build times

30
across target recall
windows.

20

Minutes

10

10X 16X

4X 8X

80%-89% 90%-94% 95%-98% 299%

Recall

<ANVIDIA I

Measuring search times
Search times for CAGRA and HNSW on Big-ANN 10M

CPU GPU
Instance rég.4xlarge g5.2xlarge
RAM 128 Gb 32Gb
vCPU 16 8
GPU - A10G
GPU Memory — 24 Gb
Price $0.8064 $1.212

GPU($) / CPU($) = 1.50

<ANVIDIA I

Measuring search times

BIGANN (10M; 128 Dim; k=100)

Search times for CAGRA and HNSW on B]g'ANN 10M — HNSWLIB = CAGRA (Batch Size 10)

200,000
g 150,000
% 100,000
2
Speedup
BIGANN (10M: 128 Dim: k=100) 3 I e
0
== Throughput (Batch Size 10) == [atency (Batch Size 10) 80% 8% 0% 9% 100%
Recall
20
15
Latency
o BIGANN (10M; 128 Dim; k=100)
=
g 10 = HNSWLIB == CAGRA (Batch Size 10)
g 0.005
(%)
5 0.004
@ 0.003
g
0 g o002
80% 85% 90% 95% 100% 2]
0.001
Recall
0.000
80% 85% 90% 95% 100%
Recall

<ANVIDIA I

Measuring search times
Search times for CAGRA and HNSW on Big-ANN 10M

Speedup
BIGANN (10M; 128 Dim; k=100)

= = Throughput (Batch Size 1) == Throughput (Batch Size 10) = = Latency (Batch Size 1)
== | atency (Batch Size 10)

30
20 :
[oN
o |
e}
Q
[0
Q.
7 10
0
80% 85% 90% 95% 100%

Recall

Throughput
BIGANN (10M; 128 Dim; k=100)
= HNSWLIB == CAGRA (Batch Size 1) == CAGRA (Batch Size 10)
200,000
150,000

100,000

50,000

Queries per Second (1/s)

0
80% 85% 90% 95% 100%

Recall

Latency
BIGANN (10M; 128 Dim; k=100)
== HNSWLIB == CAGRA (Batch Size 1) == CAGRA (Batch Size 10)
0.005

0.004

0.003

Seconds (s)

0.002

0.001

0.000 —
80% 85% 90% 95% 100%

Recall

< NVIDIA.

RAFT ANN Benchmarks

Reproducible benchmarking for state-of-the-art ANN
comparison

CUDA-friendly reproducible benchmarking tool to
compare state-of-the-art ANN implementations at C++
level

Heavily inspired by https://ann-benchmarks.com/

Conda package and Docker containers available

Measures both latency and throughput by saturating
hardware

Tools for users to reproduce ANN benchmarks on
their own hardware, data, and algorithms.

Learn more in the RAFT ANN Benchmarks
documentation

name: raft_ivf_pq
groups:
base:
build:
nlist: [500, 1024, 1648, 3200, 6400, 100000]
pq_dim: [128, 64, 32]
pq_bits: [8, 6]
ratio: [1]
niter: [25]
search:
nprobe: [1, 5, 10, 50, 100, 200, 500, 1000, 2000]
internalDistanceDtype: ["float", "half"]
smemLutDtype: ["float", "fp8", "half"]

Produces standardized charts and CSV files to

compare performance

8

deep-image-96-inner k=100 batch_size=10
Build Time for Highest QPS
raft_cagra
= oswiib
1000
800
iy £ 600
£
H
0
200
®@85% Recall ©30% Recall ®95% Recall

https://ann-benchmarks.com/
https://docs.rapids.ai/api/raft/nightly/raft_ann_benchmarks/

Wiki-all Dataset

Benchmarking Vector Search for RAG/LLM at Scale

e Composed of English wiki texts from Kaggle and --
88M

multi-lingual wiki texts from Cohere wikipedia. 251GB

e For testing at scale with large dimensions 10M 29GB

o Full dataset larger than a single GPU ™ 2 0GB

o Forces distributed or out-of-core solutions '

e 768 dimensional dataset of LLM embeddings to benchmark
vector search for RAG/LLM

e Supported by RAFT ANN Benchmarking tool

e Free and publicly available:
https://docs.rapids.ai/api/raft/nightly/wiki all dataset/

<ANVIDIA I

https://www.kaggle.com/datasets/jjinho/wikipedia-20230701
https://huggingface.co/datasets/Cohere/wikipedia-22-12
https://docs.rapids.ai/api/raft/nightly/wiki_all_dataset/

Price / Performance

Deep 10M | throughput | price-pert

C2-standard-30 G2-standard-32
Intel Cascade Lake 15-core Nvidia L4
$1.32/hr $1.80/hr
°°°°°° \\

I—o/'_'/_

llllllllllll

Same performance for ~57% less

<ANVIDIA I

Gist | throughput | price-perf

K: 10

C2-standard-60 G2-standard-32
Intel Cascade Lake 30-core Nvidia L4
$2.57/hr $1.80/hr

ooooo

mmmmmmmmmm

Same performance for ~65% less

<ANVIDIA I

=== hnswlib

latency | price-perf =t

deep-image-96-inner k=100 batch

size=1

G2-standard-32 .
Nvidia L4 i 1
$1.80/hr K

HNSWLIB » '_,.r[} 2 ——

C2-standard-30 .) e
Intel Cascade Lake 15-core s ' ' v 2000 b 0t ' '
$1.32/hr 7 . /

RAFT CAGRA) 5 /

6x-10x Lower | /'f

latency

e s 10 0o) o a5 y 10
Recall Recall <ANVIDIA I

Gist | index build | price-pert

gist-960-euclidean
Build Time for Highest QPS

| = raft_cagra
GPU (L4)Z $0.01 7w hnswiib
CPU (15-core): $0.16
400 -
CPU (30-core): $0.32
C)
0 300 A
=
©
%
@ 200
100
Note: All available threads were used to
build HNSW index but build times were gl
about the same on 15-core and 30-core. @85% Recall @90% Recall @95% Recall

Same performance for 16x-32x less

<ANVIDIA I

Latency Price Performance
Batch size 1 and 10 (BIGANN-10M, 128 dimension)

Latency Latency Speedup
BIGANN (10M; 128 Dim; k=100) BIGANN (10M; 128 Dim; k=100)
== HNSWLIB == CAGRA (Batch Size 1) == CAGRA (Batch Size 10) = = Latency (Batch Size 1) == Latency (Batch Size 10) = = Latency Price Adjusted (Batch Size 1)
0.005 == | atency Price Adjusted (Batch Size 10)
30

0.004
@ 0003 20
%) o
T >
{ = e}
g 0002 §
(%] (%) 10

0.001

Ty
0.000 0
80% 85% 90% 95% 100% 80% 85% 90% 95% 100%
Recall Recall

<ANVIDIA I

. \

Pairwise distances

Every spatial library needs them!
e Flexible, composable building blocks that
live at the heart of vector search.
e Uses CUTLASS GEMM for tensor cores
e Element-wise epilogue operations (such as

norm-based expansion functions) fused with
GEMM.

e Kernel gramm API for constructing
reproducing kernels (useful for kernel
methods like Kernel PCA, Kernel density and
SVM)

<ANVIDIA I

K-Selection

. . . . —e— SampleSelect — Sort —+— WarpSelect —e— AIR Top-K
A"'TopK: Adaptlve and Iteration-fused Radix Top-K —~ BucketSelect —e— RadixSelect ~ —u— BlockSelect ~—— Gridselect
e —+— QuickSelect —e— Bitonic Top-K
e Minimizes CPU-GPU communication and device data S — S,
access
GridSelect: Improved WarpSelect (from FAISS) © .
e Shared queue and parallel two-step insertion to 2
decrease the frequency of costly operations S0 ojf
g
=
Y [S ————— ° 2 N ibhbhuBmn NBRDBLIBGIGD LD
il N o o A 2 (2)Batch=1k=10Deepl8 (3)Batch=1k=100 DeeplB
501 —6— SOTA A0 —¥- GridSelect H100
~-®- AIR Top-K A100 =©- SOTA H100
40 --¥+ GridSelect A100
O QD DD DD D@D DD Qe O OO 100 4 10°

Running Time (unit:ms)
8

N

20 4
104 v 101 4 071 5

Pt grg BT 00000000000

- = P— " O— - —O— " —S— O —0— & O =
0 T T T T T T T T T T T T T T

—_—
345678910:019‘:.(1;1314151617181920 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19
2
loga(N)

“Parallel Top-K Algorithms on GPU: A Comprehensive Study and New Methods”, Zhang et al., SC23

<ANVIDIA I

https://dl.acm.org/doi/10.1145/3581784.3607062

Fusing Distances and K-Selection

e Special optimizations when k < 64 Fused k-NN Primitive

Index Rows Query Rows GPU-FAISS cuSLINK

e Compute distance and k-selection in single “fused”

L o 100K 100K 261ms 143ms

kernel to eliminate additional memory transfers. 200K 200K 783ms 537ms
400K 400K 2706ms 2017ms

1M 1M 1.607s 1.218s

e K-selection done in registers for 1-NN and shared
memory for k-NN.
Fused 1-NN Primitive
e Important computation in some clustering
algorithms, (e.g. k-means and single-linkage

Index Rows Query Rows Cols GPU-FAISS cuSLINK

: 100K 100 128 98.4ms 0.55ms
ClUSter]ng)' 100K 100 256 95.6ms 0.967ms
100K 1k 64 96.6ms 1.85ms
100K 1K 128 98.9ms 3.39ms
100K 1K 256 104ms 6.46ms

100K 10K 64 126ms 17ms

100K 10K 128 146ms 32ms
100K 10K 256 156ms 62.2ms

“cuSLINK: Single-linkage Agglomerative Clustering on the CPU", Nolet et al., ECML-PKDD23

<ANVIDIA I

https://arxiv.org/abs/2306.16354

Semirings, Distances, and Sparse k-NN

MovieLens scRNA NY Times Bag of Words SEC Edgar
Distance Baseline RAFT Baseline RAFT Baseline RAFT Baseline RAFT
g Correlation 130.57 111.20 207.00 235.00 257.36 337.11 134.79 87.99
% Cosine 131.39 110.01 206.00 233.00 257.73 334.86 127.63 87.96
2 Dice 130.52 110.94 206.00 233.00 130.35 335.49 134.36 88.19
S Euclidean 13193 111.38 206.00 233.00 258.38 336.63 134.75 87.77
E Hellinger 129.79 110.82 205.00 232.00 258.22 334.80 134.11 87.83
2 Jaccard 130.51 110.67 206.00 233.00 258.24 336.01 134.55 87.73
2 Russel-Rao 130.35 109.68 206.00 232.00 257.58 332.93 13431 87.94
% Canberra 3014.34 268.11 4027.00 598.00 4164.98 819.80 505.71 102.79
:3 Chebyshev 1621.00 336.05 3907.00 546.00 2709.30 1072.35 253.00 146.41
= Hamming 163530 229.59 3902.00 481.00 2724.86 728.05 25827 97.65
é Jensen-Shannon ~ 7187.27 415.12 4257.00 1052.00 10869.32 1331.37 124883 142.96
& KL Divergence 5013.65 170.06 4117.00 409.00 7099.08 525.32 753.56 87.72
& Manhattan 1632.05 227.98 3904.00 477.00 2699.91 71578 254.69 98.05
Z Minkowski 1632.05 367.17 4051.00 838.00 5855.79 1161.31 64671 129.47
.
® Uses the framework of algebraic

semirings popular in graph analytics

® Novel and state-of-the-art SpMV

(sparse matrix-vector) for computing
pairwise distance and tiled k-NN

® Uses same k-selection routines from
dense brute-force kNN

Distance Formula NAMM Norm Expansion
Correlation 1-7= ZOI,_(:J _\7(—”: :1,), = Inl, 1- \/<kuz\\t(f|'|i>|lzli<ﬂ:||!,7|’|z—nyu2>
Cosine AN Ly 1= ﬁéﬁiﬁg
Dice-Sorensen (2;_2[“ x):=+ &y_lﬁ g Loy f;iyy

Dot Product ELO ZiYi (z-y)
Euclidean Yoo lzi — yil? Ly (13 — 2z -) + llyl13
Canberra o Ol'lz\Tﬂ;Ll {\II+IuI’ }

Chebyshev Zf:o max(z; — y;) {max(z —y),0}

Hamming &kzﬂ {z #y,0}

Hellinger "/Lg\/ Z:c:o (Vi = Vi) (Vz - Y)
Jaccard Zicomiy: Lo 1- mﬁiﬁw

Ot gz +3 gyl % (ziyi

Jensen-Shannon

k z, Y
Yo Tilog -ty log o

{zlog % +ylog £,0}

2

KL-Divergence iy log(%+) (z-log %)
Manhattan Zi=0 |z; — yil {lz —yl,0}

Minkowski (X5, |2 — wilp) /P {lz —yl7,0}

Russel-Rao —k_z’z,f" — ;_(: .

“GPU Semiring Primitives for Sparse Neighborhood Methods”, Nolet et al., MLSys22

<ANVIDIA I

https://arxiv.org/abs/2104.06357

Balanced / Hierarchical K-means

e Uses Fused 1-NN Primitive to compute closest
centroids

e Vectors more uniformly distributed across
clusters

e Utilizes tensor cores

K

B matrix
(cluster
centers)

Ktife

A matrix
(dataset vectors)

Ktile
—

C matrix

Ntle |Block,, |

-~

P

(idx, dist)
o

Fused NN op

<ANVIDIA I

IVF . F I at DEEP-100M IVF-Flat index build time

B FAISS Intel SPR 52 cores [l FAISSH100 [RAFT H100,,,, ¢

1000 5478

coarse search: select nearest clusters fine search: calc distance to all vecs in selected clusters

distance 108.2
computation

286
165
100

gueny 4
:— »* 55 T
_ X | 25
—] L'l 10

query 2
« — -l.
=] Al
pr—rt 1

time (s)

s | 10M rows, 5k 10M rows, 50k 20M rows, 50k 100M rows, 50k 100M rows,
I g clusters clusters clusters clusters 100k clusters
cluster centers query points list of vectors in selected clusters
e Uses balanced k-means implementation IVF-Flat Search
DEEP-100M dataset, 100k clusters, batch_size=10, k=10, H100 SXM, Intel 8480CL

e Balanced clustering uses tensor cores to speed
up computation

@® RAFT @ FAISSGPU @ FAISSCPU

e Vectorized interleaved layout improves memory '= ; 1 - ‘
reads g 10000 =
e Support for 8-bit datatypes (uint8 and int8) g o ﬁ\‘\\
e Supports custom predicate pre-filter -
e Improved performance over FAISS GPU for small 500 i e
batch sizes 0.80 0.85 0.90 0.95 1.00

<ANVIDIA I

IVF P Q IVF-PQ vs HNSW Build Time
- DEEP dataset, 100M records, IVF-PQ compression ratio = 15

W HNSW (Intel 8480CL, 56 cores) [l IVF-PQ (NVIDIA H100 PCle)

e Lower PQ bits (4-8) provide better compression

and more efficient use of shared memory i
e Configurable lookup table and distance precision ° — =y

provide faster computation and efficient use of VE-0 ve HNSW Search Time

Shared memory DEEP dataset, 100M records, k = 10, recall > 0.95

M HNSW (Intel 8480CL, 56 cores) [l IVF-PQ (NVIDIA H100 PCle)
e Support for reduced precision (uint8 and int8) I
g

e Supports custom predicate pre-filter i

0

1 query 10 queries 10K queries
Batch Size
Deep-100M w/ K-means trained on 10%
build hierarchical(10000000, S000(predic m vf_pq:extend [80.785 s}
U (predict] (predic.) (predic.)

Hierarchical k-means Create codebooks Compress dataset vectors
<ANVIDIA I

Random Ball Cover

Reduces to an inverted file index where the number of probes are computed
® Choose centroids uniformly at random and find closest index points to each (1-nn)
® Use triangle inequality during search to compute probes for each query point
® Use IVF-flat algorithm to search closest probes. Can be both exact and approximate
°

Can be used for k-NN and eps-NN
)
@ W
<D
Y,

“Accelerating Nearest Neighbors Search on Manycore Systems”, Lawrence Cayton, 2011

<ANVIDIA I

https://arxiv.org/pdf/1103.2635.pdf

Nearest Neighbors Descent

NN-Descent All-neighbors Graph Build

@ IvF-PQ @ NN-Descent

e Useful for accelerated all-neighbors
graph construction -

e Currently used to build CAGRA graph
e Utilizes tensor cores, resulting in
speedup from original paper

2000

e Graph sampling and updating are 1000
offloaded to CPU, reducing GPU
memory usage 0
26" » 0“&“ ¥ \\,@"‘ °®“3s0‘° 0\:@"‘ & ot o Q)\\(’A@“‘

“Fast k-NN Graph Construction by GPU-based NN Descent”, Wang et al,, CIKM21

<ANVIDIA I

https://dl.acm.org/doi/abs/10.1145/3459637.3482344#:~:text=In%20this%20paper%2C%20NN%2DDescent,bottleneck%20under%20GPU%20computation%20architecture.

I TOTIIILCI I Yy

Improved pre-filtering unlocks advanced search

capabilities

Hybrid Search

Metadata

]

Vectors

Access Controls

(04 Jo2 [.. [ox x O

Vector Removal Multi-valued Keys
04 Jo2 [o1]
AN
02 [07 [.. [os |
0 05 [o3 [~ Joz |

Accepts predicate function to filter vectors during
search

Filtering primitives optimized for GPU (eg. bitset,
bitmask, hash table, bloom filter)

<ANVIDIA I

Single query at a time
CAGRA

Implementation Device

GPU-Accelerated State-of-the-Art Graph-Based ANN oty o il | T i
SIFT (dim=128) GIST (dim=960)

o« o . . . 100 T R |mm‘ Y
® Individual queries parallelized during search g "] § 10 et —

10 102 1 T N‘\—

0.85 0.9;&"@1(()’.95 1.00 0.85 0.91C3I|@1%95 1.00

® Setting records for both single query and large batch e S Gl et i (G 58}
1 —.*m""'-. i Yoy [

performance N (S — .
102 - '”""hv 102 . : oY
0.85 0.90 0.95 1.00 0.85 0.90 0.95 1.00
° . . recall@10 recall@10
® Higher throughput than existing GPU Graph ANNs and
lower latency than SOTA CPU Graph ANNs
Batches of 10k queries
Implementation Device
—=+— CAGRA (FP16) —+— GGNN v HNSW —— GPU (NVIDIA A100)
—=— CAGRA (FP32) —+— GANNS @ NSSG -eeee CPU (AMD EPYC 7742)
EEE kNN build BB Graph optimization I Indexing SIFT (dim=128) GIST (dim=960)
DEEP-1M DEEP-10M DEEP-100M 107 10°
| ‘ 4000
40 IAlOOGPU' IEVYC 7741: 300-‘A100 GPUl lEWC7742I lAlOOGPU' IEPYC 7742' §105 .<"ﬂ"""."'*.“».“‘-'. "g i "'--’*h’.“."‘.““ 2
30 1 27.3 236.5 | 30001 2623.3
o) W 2004 @ T T T T T T 1
= 20 A = — 2000 0.80 0.85 0.90 0.95 1.00 0.80 0.85 0.90 0.95 1.00
14.6 1304 1305.6 recall@10 recall@10
10 100+ 1000 1 GloVe-200 (dim=200) NYTimes (dim=256)
0- 0« 0- 108 ! 6
CAGRA HNSW CAGRA HNSW CAGRA HNSW CAGRA graph " Q\‘\\ " = %\
g . a eve. gy,
© 100 ML © 100 "“'*-c..“__‘
.)
0.80 0.85 0.90 0.95 1.00 0.80 0.85 0.90 0.95 1.00

recall@10 recall@10

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU", Ootomo et al., 2023

<ANVIDIA I

https://arxiv.org/abs/2308.15136

CAGRA

GPU-Accelerated State-of-the-Art Graph-Based ANN

® Step 1: Build initial k-NN Graph
O Use fast ANN method like NN-Descent (or IVF-PQ)

® Step 2: Optimize k-NN Graph
O Reduce degree of the k-nn graph (reducing size) while enhancing reachability
O Enhance reachability
B Use strongly connected components
® smaller value enhances reachability

B Average 2-hop node count (number of nodes that can be reached in 2
hops)
® larger value improves exploration

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU", Ootomo et al., 2023

<ANVIDIA I

https://arxiv.org/abs/2308.15136

CAGRA

GPU-Accelerated State-of-the-Art Graph-Based ANN

Graph Optimization
P --» Detourable # detourable
® Reorder edges by rank and prune o milenk =Feivideinurlic ot om x

O increase diversity
® Reverse edge addition

O improve reachability and reduce
strong connected components

Detourable routes classified according to:

(ex—z,ez-y) st max(wxz,Wzoy) < Wxoy

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU", Ootomo et al., 2023

<ANVIDIA I

https://arxiv.org/abs/2308.15136

CAGRA

GPU-Accelerated State-of-the-Art Graph-Based ANN

initial rank
= index of the neighbor node Sorted by distance in each row
‘iflﬁ_'2“_’3_'ffffffffﬁ_‘ﬁffﬁfc?i;i{;/ 123---d BRI |
no e% no ei no ei no ei Ji Js=l 7]
node node node node LT T 1
node N node N node N node N 1T T

Neighbor node list Neighbor node list

construct
reversed graph
@
Dataset \
Initial KNN graph reordered+pruned graph \ reversed graph / CAGRA graph
| J | J
Initial graph construction Optimization

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU", Ootomo et al., 2023

<ANVIDIA I

https://arxiv.org/abs/2308.15136

CAGRA

GPU-Accelerated State-of-the-Art Graph-Based ANN

Build speedup scales with Index Build Times
. . 95% Recall
1. Number of dimensions

2. Number of vectors
3. Recall level

B CAGRA [HNSWLIB

Minutes

Build times based on
nn-descent strategy

40X

DEEP (10M; 96) BIGANN (10M; 128) GIST (1M; 960) WIKI (1M; 768)

Dataset (Records; Dimensions)

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU", Ootomo et al., 2023

<ANVIDIA I

https://arxiv.org/abs/2308.15136

CAGRA

GPU Scaling in throughput mode

e Throughput mode improves il e amerne
GPU utilization for small v s
batches

e Performance of submitting all o

queries in a single batch stays
similar to using 8x threads /
cuda streams. -

100000

e Throughput shrinks almost 2x 1 2 o
with 16x threads / cuda
streams.

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU", Ootomo et al., 2023

<ANVIDIA I

https://arxiv.org/abs/2308.15136

Vector Search with Grace Hopper

Optimal performance for huge indexes

High-speed (900 GB/s) C2C memory link allows

“spilling” of large indexes from device to host

memory

512GB of host memory allows storage of huge

indexes in memory with fast retrieval

Upcoming optimizations will keep most-accessed NVIDIA Grace Hopper Superchip

index memory on device but still offer relatively
fast access to entire index through C2C

1
Hardware Consistency !
1

CPU LPDDR5X GPU HBM3
<512GB < 96 GB HBM3

uumm uuummwu

X GRACE

1
1
1
1
1
1
1
1
i
16x PCle-5 § i

_l

=z

HOPPER $] 18x NVLINK 4 [3
GPU & 900GB/s [P

512 GB/s CPU

MI (T

CPU LPDDR5X GPU HBM3
<512 GB < 96 GB HBM3

r.n
o
o
(=3
=>o

HIGH-SPEED
I/0
< 256 GPUs

NVLINK NETWORK

<ANVIDIA I

CAGRA-Q

CAGRA + Quantization for improved scale

CAGRA requires original training vectors
to compute distances

Can keep original dataset in host memory
(this can be slow)

CAGRA-Q compresses original dataset so
it can be stored on device for faster search

Original dataset kept in host memory and
used only for reranking to improve recall

Device
CPU GPU memory

\\
4 \
| —
e] DB
Uncompressed DB |_—1
(192GB, fp16)

Final results rd

(*) Size in parentheses is the size assumed for DEEP-1B dataset
Host memory

QPs

CAGRA-Q, DEEP-100M (96-dims), batch size:10K
H100 (94GB, HBM3), GRACE (72-cores)

5,000,000

4,000,000 ==

3,000,000

2,000,000

1,000,000

0.75 0.8 0.85 0.9 0.95 1
Recall@10
—e—Original float DB (38.4 GB)
Quantized DB (5.2 GB)
--+--Quantized DB (5.2 GB), Refine_rate=2
--e--Quantized DB (5.2 GB), Refine_rate=2, Graph on host memory (pinned, NVLINK)
--+--Quantized DBJ(5.2 GB)| Refine_rate=2, Graph on host memory (huge-page, NVLINK)

>7x Compression!

CAGRA-Q makes a great companion for Grace Hopper
and improved chip-to-chip (C2C) bandwidth.

TLDR; Compressed dataset on device and graph

stored in huge page pinned memory has equivalent
performance to original dataset and graph stored on
device at high recall levels. S nvioia I

CAGRA-Q

CAGRA + Quantization for improved scale

e CAGRA-Q compresses original dataset so
it can be stored on device for faster search

e Original dataset kept in host memory and
used only for reranking to improve recall

Wiki-all-88M (251GB), Compressed: 17GB, Graph:
11GB

Batch size 1 Batch size 10
Graph on hugepage memory, refine=2 Graph on hugepage memory, refine=2
18,000 100,000
16,000 90,000
14,000 80,000
12,000 70,000

I I I A R 60,000
10,000
a

50,000
S 8000
40,000
6,000 30,000
4,000 1

QPSs

20,000
2,000 10,000
o] o]
0.7 0.8 0.9 1 0.7 0.8 0.9 1
Recall@10 Recall@10

+8CTAs -16CTAs «32CTAs -64CTAs +8CTAs -16CTAs «32CTAs -64CTAs

Deep-1B (384GB), Compressed: 52GB, Graph: 128GB

Batch size 1 Batch size 10

Grace-Hopper, Graph on hugepage memory
16,000 140,000

120000 =< _

Grace-Hopper, Graph on hugepage memory

e CAGRA-Q makes a great companion for
Grace Hopper and improved
chip-to-chip (C2C) bandwidth.

i 100000 s BN CE B R ~e i
— o000 \\\ e N e TLDR; Compressed dataset on device
\‘ g ‘ . \ and graph stored.in huge page pinned
' A - memory has equivalent performance
4,000 g . .
. to original dataset and graph stored on
2,000 ~8CTAs(norefine) ~ —-16CTAs (no refine) 32 CTAs (no refine) 64 CTAs (no refine) 4 ~8CTAs(norefine) —~16CTAs (no refine) 32 CTAs (no refine) 64 CTAs (no refine) . .
. < 8CTAS(refine=2) = 16CTAS (refine=2) = 32CTAs (refine=2) - 64CTAs (refine=2) . SECTAs(reflne=2) (i1BCTAs(tefie"d (mi32CThs (refinesd)i 564 CTAs (1efinend) deV]CG at h]gh recall levels.
0.7 0.75 08 0.85 09 0.95 1 07 0.75 08 0.85 0.95 1

Recall@10 Recall@10

<ANVIDIA I

CAGRA+HNSW

raft_cagra_base

Building index on GPU and searching on CPU | =i _base

4]
=)

8
o

e Training and updating indexes faster on the GPU

Build Time (s)
]
o

N
=3
o

e Some organizations have pre-existing CPU
infrastructure dedicated to search

=
15
o

Pr—

@85% Recall @90% Recall @95% Recall

o

wiki_all_IM k=100 batch_size=10

e We can search CAGRA graph on CPU using
HNSW

00000

A

second (1/s)

Tests are demonstrating comparable
i 1Y performance (sometimes better) even
3

pe
At
|
°

when CAGRA is used only as the base graph

e This capability is available to test in RAFT
ANN Benchmarks and will soon have a
first-class API

“Graph-based Nearest Neighbor Search: From Practice to Theory"”, Prokhorenkova et al., ICML 20

<ANVIDIA I

http://proceedings.mlr.press/v119/prokhorenkova20a/prokhorenkova20a.pdf

Scaling to 100M

Comparing trade-offs at scale for 95% recall

Memory usage, DEEP-100M
dataset size 38.4 GB

size (GB)

B host mem

B GPU mem

60

40

38.4 38.8

20
0 0

0
brute force IVF-Flat

IVF-PQ

CAGRA

Build Time (s)

deep-100M

Build Time for Highest QPS

3500 1 s raft_cagra
B hnswlib

3000 1 W= raft_ivf_pq
 raft_ivf_flat

2500 1

2000 +

1500 A

1000 A

500 A
0
@85% Recall @90% Recall

deep-100M k=10 batch_size=10

@95% Recall

500000

400000

300000

Queries per second (1/s)

200000

100000

& aftcagn
= Pnswiib

o= afvi_pa
8- v flat

0.0

Recall

08

<ANVIDIA I

Integrations

FAISS is a great way to get RAFT

RAFT will become a GPU backend for FAISS

Benefits of using FAISS as a library for vector search

It’s easy to integrate
It supports CPU and GPU interoperability

It provides multi-GPU for improved scale and
throughput

Its APls have become a standard

GPU Index

FAISS

CPU Index

<ANVIDIA I

A new GPU backend for FAISS

Modernizing existing GPU capabilities

e Working to make RAFT the default back-end for FAISS on the FAISS Integration
GPU Timeline
e RAFT will continue to improve GPU performance and v23.08 @ Brute Force Flat

features, even as new hardware architectures and CUDA
versions are released
v23.10 @& IVF-flat

e When building FAISS from source, RAFT can be enabled using a
compile-time option
v23.12 @ IVF-PQ

e Will soon have a faiss-gpu-raft Conda package

v24.02 @ CAGRA

<ANVIDIA I

Initial GPU Acceleration Partners

RAFT is empowering the ecosystem

e Milus already integrated RAFT in v2.3.0.
Expecting updated version of RAFT in the
next release and going forward.

<® Milvus

e Redis will have RAFT integrated by end of Available Now (v2.3.0)

year, with an enterprise offering in 2024.

e Five other independent software
vendors in the process of integrating
RAFT.

redis

Early 2024

e All of the cloud service providers are in
the process of evaluating RAFT. We are
assisting with price performance
estimations.

<ANVIDIA I

Release Roadmap

Features

CAGRA and HNSW
interoperability

CAGRA reduced precision
support

Multi-GPU ANN index API

C API

Multi-valued keys

Dynamic batching

RAFT Vector Search Roadmap

Description

Train an index on GPU and deploy it to CPU.
Improves scale and performance on a single GPU.

Train and search an index across multiple GPUs in a single node.

Enable third party adoption (in addition to the C++ and Python APIs)

Support multi-valued keys

Dispatches queries within a given latency budget.

Version

24.04

24.02

24.04

24.02
24.04
24.06

24.04

24.06

NVIDIA

A Variety of Ways to Get Up & Running

&
[\ [

Discussion & Support

More about RAPIDS RAFT

e RAPIDS e Check the

e RAFT IVF-PQ) documentation

e RAFT CAGRA ° documentation
e NVIDIA Tech e Talk to

) 5 RAPIDS

@RAPIDSai

NVIDIA

https://www.nvidia.com/gtc/session-catalog/?search=rapids&tab.catalogallsessionstab=16566177511100015Kus#/session/1666311693102001I3Qd
https://www.nvidia.com/gtc/session-catalog/?search=nearest%20neighbor&tab.catalogallsessionstab=16566177511100015Kus&search=nearest+neighbor#/session/1666620202078001m87I
https://arxiv.org/abs/2308.15136
https://developer.nvidia.com/blog/reusable-computational-patterns-for-machine-learning-and-data-analytics-with-rapids-raft/
https://github.com/rapidsai/raft
https://docs.rapids.ai/api/raft/stable/cpp_api/neighbors_ivf_pq.html
https://docs.rapids.ai/api/raft/stable/pylibraft_api/neighbors.html
https://www.nvidia.com/en-us/ai-data-science/professional-services/
https://github.com/rapidsai/raft
https://rapids.ai/
https://twitter.com/RAPIDSai
https://rapids.ai/slack-invite/

