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About Me

● Past 5 years at Nvidia: Data scientist and 
principal engineer on the RAPIDS ML team

● Lead engineering for vector search, machine 
learning, and data mining primitives

● Prior to Nvidia: Built massive-scale exploratory 
data science and real-time analytics platforms 
for big-data and HPC environments in the 
defense industry.
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What is RAPIDS RAFT?



RAPIDS RAFT Overview
Accelerated, Composable Building Blocks for ML & Vector Search

GPU Primitives

Core ANN/ML APIs

Vector Databases

RecSys

}

● RAFT contains ready-to-use APIs 
and composable building blocks

○ Sparse and dense matrix 
operations, nearest neighbors, 
clustering, iterative solvers, and 
more…

● Fastest Approximate and Exact 
Nearest Neighbors

○ Core ANN APIs: IVF-PQ, IVF-Flat, 
CAGRA (graph-based)

● Friendly, consistent C++17 and 
Python APIs with a header-only 
library and Apache 2.0 license

RAFT

Vector Database Technology Stack

LLM AppAnomaly 
Detection

https://github.com/rapidsai/raft


RAPIDS RAFT Overview 
Toolbox of Accelerated, Composable Building Blocks for ML & Data Analytics 

RAFT

RAFT Core
Common Utilities and API Vocabulary Elements

Cluster
K-means, Single-linkage HAC, 

Spectral clustering

Vector Search Algorithms
Brute-force, CAGRA, IVF-Flat, IVF-PQ

Distance
Pairwise Distance, 1-NN, 

Kernel gramms, etc.

Stats
Moments, Metrics

Sparse
Sparse ops

Random
Sampling

CUDA Toolkit

CUDA Math 
Libraries CCCLNCCL

Matrix/Linalg
BLAS, Matrix ops

Solver
Iterative solvers, combinatorial optim

RAPIDS Memory Manager

C++ API

Vector Search Integrations

Vector Databases      Open Source Libraries      LLM applications      Offline workflows

Python API



RMM
Unifying memory management across the GPGPU ecosystem

● Framework for defining composable memory allocation resources

● Unlocks ability to build end-to-end workflows, comprised of different libraries, to share 
memory and allocators

● Centralized memory management provides zero-copy interoperability across different 
libraries

● Enables sharing a device memory pool across supported libraries in the ecosystem

● Working to bring RMM support to FAISS!                             https://github.com/rapidsai/rmm



A little background…
GPU-accelerated nearest neighbors at Nvidia

● 2018
○ Nvidia announces RAPIDS for GPU-accelerated data science!
○ RAPIDS cuML library starts using FAISS for nearest neighbors search on the GPU

■ Nearest neighbors and pairwise distances are useful for many ML algorithms- 
clustering, manifold learning, class imbalance, classification, pre-processing, 
filtering

● 2021
○ Nvidia joins Big-ann Benchmarks ‘21 competition and wins first place alongside Intel

● 2022
○ RAPIDS open sources Big-ann Benchmarks implementation through RAFT library

■ Initial implementations include IVF-Flat, IVF-PQ, random ball cover, and 
brute-force

○ FAISS agrees to use RAFT as a back-end for GPU-accelerated vector search
● 2023

○ RAPIDS introduces graph-based vector search algorithm CAGRA



Benchmarking



Methodology
Making a fair comparison between CPU and GPU

GPUs excel at tasks that require high data throughput or low latency.

General-purpose CPU General-purpose GPU

Parallelism/per-core trade-off Limited parallelism but 
faster pre-core

Massive parallelism but 
slower per-core

Concurrency implementation Threads CUDA streams

Best when used for: I/O and fast general-purpose 
operation

Heavy compute and 
massive parallelism

Query performance Threading Batching 
(and CUDA streams)

Build performance Threading Batching



Methodology
Making a fair comparison between CPU and GPU

In general, we

● measure both latency (single-threaded one-at-a-time) and throughput (saturate 
available hardware)

● compare CPU single-query at a time to GPU at different batch sizes (usually 1, 10, 100, 
10k)

● don’t measure time to copy queries to device memory (on the order of single-digit 
microseconds)

● always compare index build times based on achieved throughput/latency and recall 
levels

● compare end-to-end walltime for both latency and throughput (to make sure we don’t 
ignore CPU idle time)



Measuring index build times
Index build times for HNSW on Big-ANN 10M

Which one’s the 
most fair to report?



Measuring index build times
Index build times for HNSW on Big-ANN 10M

80%-89%

90%-94%

95%-98%

99%+



Measuring index build times
Index build times for HNSW on Big-ANN 10M

Average build times 
across target recall 
windows.



Measuring search times
Search times for CAGRA and HNSW on Big-ANN 10M

CPU GPU

Instance r6g.4xlarge g5.2xlarge

RAM 128 Gb 32 Gb

vCPU 16 8

GPU – A10G

GPU Memory – 24 Gb

Price $0.8064 $1.212

GPU($) / CPU($) = 1.50



Measuring search times
Search times for CAGRA and HNSW on Big-ANN 10M



Measuring search times
Search times for CAGRA and HNSW on Big-ANN 10M



RAFT ANN Benchmarks
Reproducible benchmarking for state-of-the-art ANN 
comparison

name: raft_ivf_pq

groups:

  base:

    build:

      nlist: [500, 1024, 1648, 3200, 6400, 100000]

      pq_dim: [128, 64, 32]

      pq_bits: [8, 6]

      ratio: [1]

      niter: [25]

    search:

      nprobe: [1, 5, 10, 50, 100, 200, 500, 1000, 2000]

      internalDistanceDtype: ["float", "half"]

      smemLutDtype: ["float", "fp8", "half"]

● CUDA-friendly reproducible benchmarking tool to 
compare state-of-the-art ANN implementations at C++ 
level

● Heavily inspired by https://ann-benchmarks.com/

● Conda package and Docker containers available

● Measures both latency and throughput by saturating 
hardware

● Tools for users to reproduce ANN benchmarks on 
their own hardware, data, and algorithms.

● Learn more in the RAFT ANN Benchmarks 
documentation 

Produces standardized charts and CSV files to 
compare performance

https://ann-benchmarks.com/
https://docs.rapids.ai/api/raft/nightly/raft_ann_benchmarks/


Wiki-all Dataset

● Composed of English wiki texts from Kaggle and 
multi-lingual wiki texts from Cohere wikipedia.

● For testing at scale with large dimensions
○ Full dataset larger than a single GPU
○ Forces distributed or out-of-core solutions

● 768 dimensional dataset of LLM embeddings to benchmark 
vector search for RAG/LLM

● Supported by RAFT ANN Benchmarking tool

● Free and publicly available: 
https://docs.rapids.ai/api/raft/nightly/wiki_all_dataset/

# Vectors Size

88M 251GB

10M 29GB

1M 2.9GB

Benchmarking Vector Search for RAG/LLM at Scale

https://www.kaggle.com/datasets/jjinho/wikipedia-20230701
https://huggingface.co/datasets/Cohere/wikipedia-22-12
https://docs.rapids.ai/api/raft/nightly/wiki_all_dataset/


Price / Performance



Deep 10M | throughput | price-perf

Same performance for ~57% less

C2-standard-30
Intel Cascade Lake 15-core

$1.32/hr

G2-standard-32
Nvidia L4
$1.80/hr



C2-standard-60
Intel Cascade Lake 30-core

$2.57/hr

G2-standard-32
Nvidia L4
$1.80/hr

Gist | throughput | price-perf 
K: 10

Same performance for ~65% less



latency | price-perf

RAFT CAGRA
G2-standard-32
Nvidia L4
$1.80/hr

HNSWLIB
C2-standard-30
Intel Cascade Lake 15-core
$1.32/hr

6x-10x Lower 
latency



Gist | index build | price-perf

GPU (L4): $0.01
CPU (15-core ): $0.16
CPU (30-core): $0.32

Note: All available threads were used to 
build HNSW index but build times were 
about the same on 15-core and 30-core. 

Same performance for 16x-32x less



Latency Price Performance
Batch size 1 and 10 (BIGANN-10M, 128 dimension)



Notable Algorithms in RAFT



Pairwise distances

● Flexible, composable building blocks that 
live at the heart of vector search.

● Uses CUTLASS GEMM for tensor cores

● Element-wise epilogue operations (such as 
norm-based expansion functions) fused with 
GEMM.

● Kernel gramm API for constructing 
reproducing kernels (useful for kernel 
methods like Kernel PCA, Kernel density and 
SVM)

Every spatial library needs them!



K-Selection

“Parallel Top-K Algorithms on GPU: A Comprehensive Study and New Methods”, Zhang et al., SC23

AirTopK: Adaptive and Iteration-fused Radix Top-K
● Minimizes CPU-GPU communication and device data 

access

GridSelect: Improved WarpSelect (from FAISS)
● Shared queue and parallel two-step insertion to 

decrease the frequency of costly operations

https://dl.acm.org/doi/10.1145/3581784.3607062


Fusing Distances and K-Selection

● Special optimizations when k < 64

● Compute distance and k-selection in single “fused” 
kernel to eliminate additional memory transfers.

● K-selection done in registers for 1-NN and shared 
memory for k-NN.

● Important computation in some clustering 
algorithms, (e.g. k-means and single-linkage 
clustering).

Fused 1-NN Primitive

Fused k-NN Primitive

“cuSLINK: Single-linkage Agglomerative Clustering on the GPU”, Nolet et al., ECML-PKDD23

https://arxiv.org/abs/2306.16354


Semirings, Distances, and Sparse k-NN

● Uses the framework of algebraic 
semirings popular in graph analytics

● Novel and state-of-the-art SpMV 
(sparse matrix-vector) for computing 
pairwise distance and tiled k-NN

● Uses same k-selection routines from 
dense brute-force kNN

“GPU Semiring Primitives for Sparse Neighborhood Methods”, Nolet et al., MLSys22

https://arxiv.org/abs/2104.06357


Balanced / Hierarchical K-means

● Uses Fused 1-NN Primitive to compute closest 
centroids

● Vectors more uniformly distributed across 
clusters

● Utilizes tensor cores



IVF-Flat

● Uses balanced k-means implementation
● Balanced clustering uses tensor cores to speed 

up computation
● Vectorized interleaved layout improves memory 

reads
● Support for 8-bit datatypes (uint8 and int8)
● Supports custom predicate pre-filter
● Improved performance over FAISS GPU for small 

batch sizes



IVF-PQ

● Lower PQ bits (4-8) provide better compression 
and more efficient use of shared memory

● Configurable lookup table and distance precision 
provide faster computation and efficient use of 
shared memory

● Support for reduced precision (uint8 and int8)

● Supports custom predicate pre-filter

Deep-100M w/ K-means trained on 10%



Random Ball Cover

Reduces to an inverted file index where the number of probes are computed 
● Choose centroids uniformly at random and find closest index points to each (1-nn)

● Use triangle inequality during search to compute probes for each query point

● Use IVF-flat algorithm to search closest probes. Can be both exact and approximate

● Can be used for k-NN and eps-NN

“Accelerating Nearest Neighbors Search on Manycore Systems”, Lawrence Cayton, 2011

https://arxiv.org/pdf/1103.2635.pdf


Nearest Neighbors Descent

● Useful for accelerated all-neighbors 
graph construction

● Currently used to build CAGRA graph

● Utilizes tensor cores, resulting in 
speedup from original paper

● Graph sampling and updating are 
offloaded to CPU, reducing GPU 
memory usage

“Fast k-NN Graph Construction by GPU-based NN Descent”, Wang et al., CIKM21

https://dl.acm.org/doi/abs/10.1145/3459637.3482344#:~:text=In%20this%20paper%2C%20NN%2DDescent,bottleneck%20under%20GPU%20computation%20architecture.


Sample Pre-filtering

Improved pre-filtering unlocks advanced search 
capabilities  

 Both 

Metadata Vectors

Hybrid Search Vector Removal

0.4 0.2 … 0.1

0.2 0.7 … 0.8

0.5 0.3 … 0.2

Multi-valued Keys

0.4 0.2 … 0.1

Access Controls

● Accepts predicate function to filter vectors during 
search

● Filtering primitives optimized for GPU (eg. bitset, 
bitmask, hash table, bloom filter)



CAGRA



CAGRA
GPU-Accelerated State-of-the-Art Graph-Based ANN

● Individual queries parallelized during search

● Setting records for both single query and large batch 
performance

● Higher throughput than existing GPU Graph ANNs and 
lower latency than SOTA CPU Graph ANNs

Batches of 10k queries

Single query at a time

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

https://arxiv.org/abs/2308.15136


CAGRA
GPU-Accelerated State-of-the-Art Graph-Based ANN

● Step 1: Build initial k-NN Graph
○ Use fast ANN method like NN-Descent (or IVF-PQ)

● Step 2: Optimize k-NN Graph
○ Reduce degree of the k-nn graph (reducing size) while enhancing reachability
○ Enhance reachability

■ Use strongly connected components 
● smaller value enhances reachability

■ Average 2-hop node count (number of nodes that can be reached in 2 
hops)
● larger value improves exploration

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

https://arxiv.org/abs/2308.15136


CAGRA
GPU-Accelerated State-of-the-Art Graph-Based ANN

Graph Optimization

● Reorder edges by rank and prune
○  increase diversity

● Reverse edge addition 
○ improve reachability and reduce 

strong connected components

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

Detourable routes classified according to:

https://arxiv.org/abs/2308.15136


CAGRA
GPU-Accelerated State-of-the-Art Graph-Based ANN

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

https://arxiv.org/abs/2308.15136


CAGRA
GPU-Accelerated State-of-the-Art Graph-Based ANN

Build speedup scales with

1. Number of dimensions
2. Number of vectors
3. Recall level

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

Build times based on 
nn-descent strategy

https://arxiv.org/abs/2308.15136


CAGRA
GPU Scaling in throughput mode

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

● Throughput mode improves 
GPU utilization for small 
batches

● Performance of submitting all 
queries in a single batch stays 
similar to using 8x threads / 
cuda streams. 

● Throughput shrinks almost 2x 
with 16x threads / cuda 
streams.

https://arxiv.org/abs/2308.15136


Vector Search with Grace Hopper
Optimal performance for huge indexes

● High-speed (900 GB/s) C2C memory link allows 
“spilling” of large indexes from device to host 
memory

● 512GB of host memory allows storage of huge 
indexes in memory with fast retrieval

● Upcoming optimizations will keep most-accessed 
index memory on device but still offer relatively 
fast access to entire index through C2C



CAGRA-Q
CAGRA + Quantization for improved scale

● CAGRA requires original training vectors 
to compute distances

● Can keep original dataset in host memory 
(this can be slow)

● CAGRA-Q compresses original dataset so 
it can be stored on device for faster search

● Original dataset kept in host memory and 
used only for reranking to improve recall

● CAGRA-Q makes a great companion for Grace Hopper 
and improved chip-to-chip (C2C) bandwidth.

● TLDR; Compressed dataset on device and graph 
stored in huge page pinned memory has equivalent 
performance to original dataset and graph stored on 
device at high recall levels.

>7x Compression!



CAGRA-Q
CAGRA + Quantization for improved scale

Deep-1B (384GB), Compressed: 52GB, Graph: 128GB
Batch size 1 Batch size 10

Wiki-all-88M (251GB), Compressed: 17GB, Graph: 
11GB

Batch size 10Batch size 1

● CAGRA-Q compresses original dataset so 
it can be stored on device for faster search

● Original dataset kept in host memory and 
used only for reranking to improve recall

● CAGRA-Q makes a great companion for 
Grace Hopper and improved 
chip-to-chip (C2C) bandwidth.

● TLDR; Compressed dataset on device 
and graph stored in huge page pinned 
memory has equivalent performance 
to original dataset and graph stored on 
device at high recall levels.



CAGRA+HNSW
Building index on GPU and searching on CPU

● Training and updating indexes faster on the GPU

● Some organizations have pre-existing CPU 
infrastructure dedicated to search

● We can search CAGRA graph on CPU using 
HNSW

● Tests are demonstrating comparable 
performance (sometimes better) even 
when CAGRA is used only as the base graph

● This capability is available to test in RAFT 
ANN Benchmarks and will soon have a 
first-class API

“Graph-based Nearest Neighbor Search: From Practice to Theory”, Prokhorenkova et al., ICML ‘20

http://proceedings.mlr.press/v119/prokhorenkova20a/prokhorenkova20a.pdf


Scaling to 100M
Comparing trade-offs at scale for 95% recall



Integrations



FAISS is a great way to get RAFT
RAFT will become a GPU backend for FAISS

Benefits of using FAISS as a library for vector search

● It’s easy to integrate

● It supports CPU and GPU interoperability

● It  provides multi-GPU for improved scale and 
throughput

● Its APIs have become a standard

FAISS

GPU Index

RAFT

CPU Index



A new GPU backend for FAISS
Modernizing existing GPU capabilities

FAISS Integration 
Timeline

                   v23.08         Brute Force / Flat

      v23.10         IVF-flat

      v23.12         IVF-PQ

      v24.02         CAGRA

● Working to make RAFT the default back-end for FAISS on the 
GPU

● RAFT will continue to improve GPU performance and 
features, even as new hardware architectures and CUDA 
versions are released

● When building FAISS from source, RAFT can be enabled using a 
compile-time option

● Will soon have a faiss-gpu-raft Conda package



Initial GPU Acceleration Partners
RAFT is empowering the ecosystem

● Milus already integrated RAFT in v2.3.0. 
Expecting updated version of RAFT in the 
next release and going forward.

● Redis will have RAFT integrated by end of 
year, with an enterprise offering in 2024.

● Five other independent software 
vendors in the process of integrating 
RAFT.

● All of the cloud service providers are in 
the process of evaluating RAFT. We are 
assisting with price performance 
estimations.

Available Now (v2.3.0)

Early 2024



Release Roadmap



Features Description Version

CAGRA and HNSW 
interoperability

Train an index on GPU and deploy it to CPU. 24.04

CAGRA reduced precision 
support

Improves scale and performance on a single GPU. 24.02

Multi-GPU ANN index API Train and search an index across multiple GPUs in a single node. 24.04

C API Enable third party adoption (in addition to the C++ and Python APIs) 24.02
24.04
24.06

Multi-valued keys Support multi-valued keys 24.04

Dynamic batching Dispatches queries within a given latency budget. 24.06

RAFT Vector Search Roadmap
Key initiatives



Resources
A Variety of Ways to Get Up & Running

● RAPIDS GTC Talk
● RAFT IVF-PQ GTC Talk
● RAFT CAGRA arXiv
● NVIDIA Tech Blog

More about RAPIDS RAFT Discussion & Support
● Check the RAPIDS RAFT GitHub
● C++ API documentation
● Python API documentation
● Talk to NVIDIA Services

https://github.com/rapidsai/raft https://rapids.ai@RAPIDSai https://rapids.ai/slack-invite/

https://www.nvidia.com/gtc/session-catalog/?search=rapids&tab.catalogallsessionstab=16566177511100015Kus#/session/1666311693102001I3Qd
https://www.nvidia.com/gtc/session-catalog/?search=nearest%20neighbor&tab.catalogallsessionstab=16566177511100015Kus&search=nearest+neighbor#/session/1666620202078001m87I
https://arxiv.org/abs/2308.15136
https://developer.nvidia.com/blog/reusable-computational-patterns-for-machine-learning-and-data-analytics-with-rapids-raft/
https://github.com/rapidsai/raft
https://docs.rapids.ai/api/raft/stable/cpp_api/neighbors_ivf_pq.html
https://docs.rapids.ai/api/raft/stable/pylibraft_api/neighbors.html
https://www.nvidia.com/en-us/ai-data-science/professional-services/
https://github.com/rapidsai/raft
https://rapids.ai/
https://twitter.com/RAPIDSai
https://rapids.ai/slack-invite/

