
Accelerating Vector Search with RAPIDS RAFT
Summarizing the benefits, challenges, and possibilities with RAPIDS RAFT

Corey J. Nolet

About Me

● Past 5 years at Nvidia: Data scientist and
principal engineer on the RAPIDS ML team

● Lead engineering for vector search, machine
learning, and data mining primitives

● Prior to Nvidia: Built massive-scale exploratory
data science and real-time analytics platforms
for big-data and HPC environments in the
defense industry.

● What is RAPIDS RAFT?

● Benchmarking Performance
○ Price/Performance

● Notable algorithms in RAFT

● CAGRA

● Release Roadmap

Agenda

What is RAPIDS RAFT?

RAPIDS RAFT Overview
Accelerated, Composable Building Blocks for ML & Vector Search

GPU Primitives

Core ANN/ML APIs

Vector Databases

RecSys

}

● RAFT contains ready-to-use APIs
and composable building blocks

○ Sparse and dense matrix
operations, nearest neighbors,
clustering, iterative solvers, and
more…

● Fastest Approximate and Exact
Nearest Neighbors

○ Core ANN APIs: IVF-PQ, IVF-Flat,
CAGRA (graph-based)

● Friendly, consistent C++17 and
Python APIs with a header-only
library and Apache 2.0 license

RAFT

Vector Database Technology Stack

LLM AppAnomaly
Detection

https://github.com/rapidsai/raft

RAPIDS RAFT Overview
Toolbox of Accelerated, Composable Building Blocks for ML & Data Analytics

RAFT

RAFT Core
Common Utilities and API Vocabulary Elements

Cluster
K-means, Single-linkage HAC,

Spectral clustering

Vector Search Algorithms
Brute-force, CAGRA, IVF-Flat, IVF-PQ

Distance
Pairwise Distance, 1-NN,

Kernel gramms, etc.

Stats
Moments, Metrics

Sparse
Sparse ops

Random
Sampling

CUDA Toolkit

CUDA Math
Libraries CCCLNCCL

Matrix/Linalg
BLAS, Matrix ops

Solver
Iterative solvers, combinatorial optim

RAPIDS Memory Manager

C++ API

Vector Search Integrations

Vector Databases Open Source Libraries LLM applications Offline workflows

Python API

RMM
Unifying memory management across the GPGPU ecosystem

● Framework for defining composable memory allocation resources

● Unlocks ability to build end-to-end workflows, comprised of different libraries, to share
memory and allocators

● Centralized memory management provides zero-copy interoperability across different
libraries

● Enables sharing a device memory pool across supported libraries in the ecosystem

● Working to bring RMM support to FAISS! https://github.com/rapidsai/rmm

A little background…
GPU-accelerated nearest neighbors at Nvidia

● 2018
○ Nvidia announces RAPIDS for GPU-accelerated data science!
○ RAPIDS cuML library starts using FAISS for nearest neighbors search on the GPU

■ Nearest neighbors and pairwise distances are useful for many ML algorithms-
clustering, manifold learning, class imbalance, classification, pre-processing,
filtering

● 2021
○ Nvidia joins Big-ann Benchmarks ‘21 competition and wins first place alongside Intel

● 2022
○ RAPIDS open sources Big-ann Benchmarks implementation through RAFT library

■ Initial implementations include IVF-Flat, IVF-PQ, random ball cover, and
brute-force

○ FAISS agrees to use RAFT as a back-end for GPU-accelerated vector search
● 2023

○ RAPIDS introduces graph-based vector search algorithm CAGRA

Benchmarking

Methodology
Making a fair comparison between CPU and GPU

GPUs excel at tasks that require high data throughput or low latency.

General-purpose CPU General-purpose GPU

Parallelism/per-core trade-off Limited parallelism but
faster pre-core

Massive parallelism but
slower per-core

Concurrency implementation Threads CUDA streams

Best when used for: I/O and fast general-purpose
operation

Heavy compute and
massive parallelism

Query performance Threading Batching
(and CUDA streams)

Build performance Threading Batching

Methodology
Making a fair comparison between CPU and GPU

In general, we

● measure both latency (single-threaded one-at-a-time) and throughput (saturate
available hardware)

● compare CPU single-query at a time to GPU at different batch sizes (usually 1, 10, 100,
10k)

● don’t measure time to copy queries to device memory (on the order of single-digit
microseconds)

● always compare index build times based on achieved throughput/latency and recall
levels

● compare end-to-end walltime for both latency and throughput (to make sure we don’t
ignore CPU idle time)

Measuring index build times
Index build times for HNSW on Big-ANN 10M

Which one’s the
most fair to report?

Measuring index build times
Index build times for HNSW on Big-ANN 10M

80%-89%

90%-94%

95%-98%

99%+

Measuring index build times
Index build times for HNSW on Big-ANN 10M

Average build times
across target recall
windows.

Measuring search times
Search times for CAGRA and HNSW on Big-ANN 10M

CPU GPU

Instance r6g.4xlarge g5.2xlarge

RAM 128 Gb 32 Gb

vCPU 16 8

GPU – A10G

GPU Memory – 24 Gb

Price $0.8064 $1.212

GPU($) / CPU($) = 1.50

Measuring search times
Search times for CAGRA and HNSW on Big-ANN 10M

Measuring search times
Search times for CAGRA and HNSW on Big-ANN 10M

RAFT ANN Benchmarks
Reproducible benchmarking for state-of-the-art ANN
comparison

name: raft_ivf_pq

groups:

 base:

 build:

 nlist: [500, 1024, 1648, 3200, 6400, 100000]

 pq_dim: [128, 64, 32]

 pq_bits: [8, 6]

 ratio: [1]

 niter: [25]

 search:

 nprobe: [1, 5, 10, 50, 100, 200, 500, 1000, 2000]

 internalDistanceDtype: ["float", "half"]

 smemLutDtype: ["float", "fp8", "half"]

● CUDA-friendly reproducible benchmarking tool to
compare state-of-the-art ANN implementations at C++
level

● Heavily inspired by https://ann-benchmarks.com/

● Conda package and Docker containers available

● Measures both latency and throughput by saturating
hardware

● Tools for users to reproduce ANN benchmarks on
their own hardware, data, and algorithms.

● Learn more in the RAFT ANN Benchmarks
documentation

Produces standardized charts and CSV files to
compare performance

https://ann-benchmarks.com/
https://docs.rapids.ai/api/raft/nightly/raft_ann_benchmarks/

Wiki-all Dataset

● Composed of English wiki texts from Kaggle and
multi-lingual wiki texts from Cohere wikipedia.

● For testing at scale with large dimensions
○ Full dataset larger than a single GPU
○ Forces distributed or out-of-core solutions

● 768 dimensional dataset of LLM embeddings to benchmark
vector search for RAG/LLM

● Supported by RAFT ANN Benchmarking tool

● Free and publicly available:
https://docs.rapids.ai/api/raft/nightly/wiki_all_dataset/

Vectors Size

88M 251GB

10M 29GB

1M 2.9GB

Benchmarking Vector Search for RAG/LLM at Scale

https://www.kaggle.com/datasets/jjinho/wikipedia-20230701
https://huggingface.co/datasets/Cohere/wikipedia-22-12
https://docs.rapids.ai/api/raft/nightly/wiki_all_dataset/

Price / Performance

Deep 10M | throughput | price-perf

Same performance for ~57% less

C2-standard-30
Intel Cascade Lake 15-core

$1.32/hr

G2-standard-32
Nvidia L4
$1.80/hr

C2-standard-60
Intel Cascade Lake 30-core

$2.57/hr

G2-standard-32
Nvidia L4
$1.80/hr

Gist | throughput | price-perf
K: 10

Same performance for ~65% less

latency | price-perf

RAFT CAGRA
G2-standard-32
Nvidia L4
$1.80/hr

HNSWLIB
C2-standard-30
Intel Cascade Lake 15-core
$1.32/hr

6x-10x Lower
latency

Gist | index build | price-perf

GPU (L4): $0.01
CPU (15-core): $0.16
CPU (30-core): $0.32

Note: All available threads were used to
build HNSW index but build times were
about the same on 15-core and 30-core.

Same performance for 16x-32x less

Latency Price Performance
Batch size 1 and 10 (BIGANN-10M, 128 dimension)

Notable Algorithms in RAFT

Pairwise distances

● Flexible, composable building blocks that
live at the heart of vector search.

● Uses CUTLASS GEMM for tensor cores

● Element-wise epilogue operations (such as
norm-based expansion functions) fused with
GEMM.

● Kernel gramm API for constructing
reproducing kernels (useful for kernel
methods like Kernel PCA, Kernel density and
SVM)

Every spatial library needs them!

K-Selection

“Parallel Top-K Algorithms on GPU: A Comprehensive Study and New Methods”, Zhang et al., SC23

AirTopK: Adaptive and Iteration-fused Radix Top-K
● Minimizes CPU-GPU communication and device data

access

GridSelect: Improved WarpSelect (from FAISS)
● Shared queue and parallel two-step insertion to

decrease the frequency of costly operations

https://dl.acm.org/doi/10.1145/3581784.3607062

Fusing Distances and K-Selection

● Special optimizations when k < 64

● Compute distance and k-selection in single “fused”
kernel to eliminate additional memory transfers.

● K-selection done in registers for 1-NN and shared
memory for k-NN.

● Important computation in some clustering
algorithms, (e.g. k-means and single-linkage
clustering).

Fused 1-NN Primitive

Fused k-NN Primitive

“cuSLINK: Single-linkage Agglomerative Clustering on the GPU”, Nolet et al., ECML-PKDD23

https://arxiv.org/abs/2306.16354

Semirings, Distances, and Sparse k-NN

● Uses the framework of algebraic
semirings popular in graph analytics

● Novel and state-of-the-art SpMV
(sparse matrix-vector) for computing
pairwise distance and tiled k-NN

● Uses same k-selection routines from
dense brute-force kNN

“GPU Semiring Primitives for Sparse Neighborhood Methods”, Nolet et al., MLSys22

https://arxiv.org/abs/2104.06357

Balanced / Hierarchical K-means

● Uses Fused 1-NN Primitive to compute closest
centroids

● Vectors more uniformly distributed across
clusters

● Utilizes tensor cores

IVF-Flat

● Uses balanced k-means implementation
● Balanced clustering uses tensor cores to speed

up computation
● Vectorized interleaved layout improves memory

reads
● Support for 8-bit datatypes (uint8 and int8)
● Supports custom predicate pre-filter
● Improved performance over FAISS GPU for small

batch sizes

IVF-PQ

● Lower PQ bits (4-8) provide better compression
and more efficient use of shared memory

● Configurable lookup table and distance precision
provide faster computation and efficient use of
shared memory

● Support for reduced precision (uint8 and int8)

● Supports custom predicate pre-filter

Deep-100M w/ K-means trained on 10%

Random Ball Cover

Reduces to an inverted file index where the number of probes are computed
● Choose centroids uniformly at random and find closest index points to each (1-nn)

● Use triangle inequality during search to compute probes for each query point

● Use IVF-flat algorithm to search closest probes. Can be both exact and approximate

● Can be used for k-NN and eps-NN

“Accelerating Nearest Neighbors Search on Manycore Systems”, Lawrence Cayton, 2011

https://arxiv.org/pdf/1103.2635.pdf

Nearest Neighbors Descent

● Useful for accelerated all-neighbors
graph construction

● Currently used to build CAGRA graph

● Utilizes tensor cores, resulting in
speedup from original paper

● Graph sampling and updating are
offloaded to CPU, reducing GPU
memory usage

“Fast k-NN Graph Construction by GPU-based NN Descent”, Wang et al., CIKM21

https://dl.acm.org/doi/abs/10.1145/3459637.3482344#:~:text=In%20this%20paper%2C%20NN%2DDescent,bottleneck%20under%20GPU%20computation%20architecture.

Sample Pre-filtering

Improved pre-filtering unlocks advanced search
capabilities

 Both

Metadata Vectors

Hybrid Search Vector Removal

0.4 0.2 … 0.1

0.2 0.7 … 0.8

0.5 0.3 … 0.2

Multi-valued Keys

0.4 0.2 … 0.1

Access Controls

● Accepts predicate function to filter vectors during
search

● Filtering primitives optimized for GPU (eg. bitset,
bitmask, hash table, bloom filter)

CAGRA

CAGRA
GPU-Accelerated State-of-the-Art Graph-Based ANN

● Individual queries parallelized during search

● Setting records for both single query and large batch
performance

● Higher throughput than existing GPU Graph ANNs and
lower latency than SOTA CPU Graph ANNs

Batches of 10k queries

Single query at a time

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

https://arxiv.org/abs/2308.15136

CAGRA
GPU-Accelerated State-of-the-Art Graph-Based ANN

● Step 1: Build initial k-NN Graph
○ Use fast ANN method like NN-Descent (or IVF-PQ)

● Step 2: Optimize k-NN Graph
○ Reduce degree of the k-nn graph (reducing size) while enhancing reachability
○ Enhance reachability

■ Use strongly connected components
● smaller value enhances reachability

■ Average 2-hop node count (number of nodes that can be reached in 2
hops)
● larger value improves exploration

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

https://arxiv.org/abs/2308.15136

CAGRA
GPU-Accelerated State-of-the-Art Graph-Based ANN

Graph Optimization

● Reorder edges by rank and prune
○ increase diversity

● Reverse edge addition
○ improve reachability and reduce

strong connected components

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

Detourable routes classified according to:

https://arxiv.org/abs/2308.15136

CAGRA
GPU-Accelerated State-of-the-Art Graph-Based ANN

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

https://arxiv.org/abs/2308.15136

CAGRA
GPU-Accelerated State-of-the-Art Graph-Based ANN

Build speedup scales with

1. Number of dimensions
2. Number of vectors
3. Recall level

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

Build times based on
nn-descent strategy

https://arxiv.org/abs/2308.15136

CAGRA
GPU Scaling in throughput mode

“CAGRA: Highly Parallel Graph Construction and Approximate Nearest Neighbor Search on the GPU”, Ootomo et al., 2023

● Throughput mode improves
GPU utilization for small
batches

● Performance of submitting all
queries in a single batch stays
similar to using 8x threads /
cuda streams.

● Throughput shrinks almost 2x
with 16x threads / cuda
streams.

https://arxiv.org/abs/2308.15136

Vector Search with Grace Hopper
Optimal performance for huge indexes

● High-speed (900 GB/s) C2C memory link allows
“spilling” of large indexes from device to host
memory

● 512GB of host memory allows storage of huge
indexes in memory with fast retrieval

● Upcoming optimizations will keep most-accessed
index memory on device but still offer relatively
fast access to entire index through C2C

CAGRA-Q
CAGRA + Quantization for improved scale

● CAGRA requires original training vectors
to compute distances

● Can keep original dataset in host memory
(this can be slow)

● CAGRA-Q compresses original dataset so
it can be stored on device for faster search

● Original dataset kept in host memory and
used only for reranking to improve recall

● CAGRA-Q makes a great companion for Grace Hopper
and improved chip-to-chip (C2C) bandwidth.

● TLDR; Compressed dataset on device and graph
stored in huge page pinned memory has equivalent
performance to original dataset and graph stored on
device at high recall levels.

>7x Compression!

CAGRA-Q
CAGRA + Quantization for improved scale

Deep-1B (384GB), Compressed: 52GB, Graph: 128GB
Batch size 1 Batch size 10

Wiki-all-88M (251GB), Compressed: 17GB, Graph:
11GB

Batch size 10Batch size 1

● CAGRA-Q compresses original dataset so
it can be stored on device for faster search

● Original dataset kept in host memory and
used only for reranking to improve recall

● CAGRA-Q makes a great companion for
Grace Hopper and improved
chip-to-chip (C2C) bandwidth.

● TLDR; Compressed dataset on device
and graph stored in huge page pinned
memory has equivalent performance
to original dataset and graph stored on
device at high recall levels.

CAGRA+HNSW
Building index on GPU and searching on CPU

● Training and updating indexes faster on the GPU

● Some organizations have pre-existing CPU
infrastructure dedicated to search

● We can search CAGRA graph on CPU using
HNSW

● Tests are demonstrating comparable
performance (sometimes better) even
when CAGRA is used only as the base graph

● This capability is available to test in RAFT
ANN Benchmarks and will soon have a
first-class API

“Graph-based Nearest Neighbor Search: From Practice to Theory”, Prokhorenkova et al., ICML ‘20

http://proceedings.mlr.press/v119/prokhorenkova20a/prokhorenkova20a.pdf

Scaling to 100M
Comparing trade-offs at scale for 95% recall

Integrations

FAISS is a great way to get RAFT
RAFT will become a GPU backend for FAISS

Benefits of using FAISS as a library for vector search

● It’s easy to integrate

● It supports CPU and GPU interoperability

● It provides multi-GPU for improved scale and
throughput

● Its APIs have become a standard

FAISS

GPU Index

RAFT

CPU Index

A new GPU backend for FAISS
Modernizing existing GPU capabilities

FAISS Integration
Timeline

 v23.08 Brute Force / Flat

 v23.10 IVF-flat

 v23.12 IVF-PQ

 v24.02 CAGRA

● Working to make RAFT the default back-end for FAISS on the
GPU

● RAFT will continue to improve GPU performance and
features, even as new hardware architectures and CUDA
versions are released

● When building FAISS from source, RAFT can be enabled using a
compile-time option

● Will soon have a faiss-gpu-raft Conda package

Initial GPU Acceleration Partners
RAFT is empowering the ecosystem

● Milus already integrated RAFT in v2.3.0.
Expecting updated version of RAFT in the
next release and going forward.

● Redis will have RAFT integrated by end of
year, with an enterprise offering in 2024.

● Five other independent software
vendors in the process of integrating
RAFT.

● All of the cloud service providers are in
the process of evaluating RAFT. We are
assisting with price performance
estimations.

Available Now (v2.3.0)

Early 2024

Release Roadmap

Features Description Version

CAGRA and HNSW
interoperability

Train an index on GPU and deploy it to CPU. 24.04

CAGRA reduced precision
support

Improves scale and performance on a single GPU. 24.02

Multi-GPU ANN index API Train and search an index across multiple GPUs in a single node. 24.04

C API Enable third party adoption (in addition to the C++ and Python APIs) 24.02
24.04
24.06

Multi-valued keys Support multi-valued keys 24.04

Dynamic batching Dispatches queries within a given latency budget. 24.06

RAFT Vector Search Roadmap
Key initiatives

Resources
A Variety of Ways to Get Up & Running

● RAPIDS GTC Talk
● RAFT IVF-PQ GTC Talk
● RAFT CAGRA arXiv
● NVIDIA Tech Blog

More about RAPIDS RAFT Discussion & Support
● Check the RAPIDS RAFT GitHub
● C++ API documentation
● Python API documentation
● Talk to NVIDIA Services

https://github.com/rapidsai/raft https://rapids.ai@RAPIDSai https://rapids.ai/slack-invite/

https://www.nvidia.com/gtc/session-catalog/?search=rapids&tab.catalogallsessionstab=16566177511100015Kus#/session/1666311693102001I3Qd
https://www.nvidia.com/gtc/session-catalog/?search=nearest%20neighbor&tab.catalogallsessionstab=16566177511100015Kus&search=nearest+neighbor#/session/1666620202078001m87I
https://arxiv.org/abs/2308.15136
https://developer.nvidia.com/blog/reusable-computational-patterns-for-machine-learning-and-data-analytics-with-rapids-raft/
https://github.com/rapidsai/raft
https://docs.rapids.ai/api/raft/stable/cpp_api/neighbors_ivf_pq.html
https://docs.rapids.ai/api/raft/stable/pylibraft_api/neighbors.html
https://www.nvidia.com/en-us/ai-data-science/professional-services/
https://github.com/rapidsai/raft
https://rapids.ai/
https://twitter.com/RAPIDSai
https://rapids.ai/slack-invite/

