
Billion-scale Similarity Search
Track 2: SSD Solution

Xiaomeng Yi, Xiaofan Luan, Weizhi Xu, Qianya Cheng,
Jigao Luo, Xiangyu Wang, Jiquan Long, Xiao Yan, Zheng
Bian, Jiarui Luo, Shengjun Li, Chengming Li

12/8/2021

Competition Background

• Competition Requirements

• Billion-scale vector datasets (93GB~745GB)

• Search: 1500+QPS

• Index building: 4 days per dataset

• Search Machine: 8 vCPU, 64 GB RAM, 1 TB SSD

• Index Machine: 64 vCPU, 128 GB RAM, 4 TB SSD

• Motivation

• Fast data growth

• Lower data management cost

• Moderate performance degradation

2

Solution Overview

• Data storage in SSD

• Assign vectors to buckets

• Buckets are page-aligned for read efficiency

• Maintain bucket graph in memroy

• Represent each bucket with its centroid

• Organize centroids in a graph index

• Vector search

• Find related buckets through graph search

• Fetch these buckets from SSD for scan

3

Assign vectors to buckets

• Target

• Assign similar vectors into the same bucket

• Key consideration

• Efficient read for SSD

• Fast processing

• Our choice:

• Hierachical KMeans

• Page-aligned bucket size (4KB-8KB)

4

Index building

• Target

• Quickly find query-related buckets

• Key consideration

• Accuracy

• Efficiency

• Fit into memory

• Our choice

• Graph index

• Map centroid to integer vectors

5

Vector Search

• Range Search

1. Search graph index to find a small set of

seed buckets

2. Find other related buckets from seed

buckets with BFS until reaching range

radius

3. Brute-force scan related buckets

• KNN Search

1. Search graph index to find related

buckets

2. Brute-force scan related buckets

• Optimization choices

• Pruning

• Data reuse across queries

• Pipeline compute and I/O

6

Conclusion

• Summary

• Inverted files with a graph index

• Hierachical KMeans to speedup training

• Page-aligned files to improve disk read efficiency

Dataset ssnpp-1B text2image-1B msspacev-1B
Recall@1500QPS(ours) 0.885(0.723↑) 0.495(0.007↑) 0.760(0.14↓)
Index building time(ours) 12 hrs 28 hrs 7 hrs
Recall@1500QPS(baseline) 0.162 0.488 0.901

• Results

• Works better on range search dataset

• Representativeness of centroids for range/KNN search queries

7

Future directions

• Uniformed index to handle both range search and KNN search

• Analyze and exploit data hotness in queries

• Vector search with heterogeneous device/storage(NVM/SSD/GPU/FPGA)

• Distributed search algorithms

• Better understand datasets and indexes

• Automated index type/parameter recommendation

• Learned index for vectors

• Efficient vector search with attribute filtering

• Multi-modal information retrieval

8

About Zilliz

Vision

Build a data infrastructure that could help people accelerate AI adoptions in their organizations

https://hub.towhee.io/

https://github.com/towhee-io/towhee

@towheeio

Open-source Projects

• Towhee

X2Vec: encode unstructured data into

embeddings

• Milvus

Cloud native vector database for unstructured

data

https://milvus.io

https://github.com/milvus-io/milvus

@milvusio

9

Thank You

xiaomeng.yi@zilliz.com

https://www.linkedin.com/in/xiaomeng-yi-10b998a5/

 @xiaomeng_y1

