

Billion-scale Similarity Search Track 2: SSD Solution

Xiaomeng Yi, Xiaofan Luan, Weizhi Xu, Qianya Cheng, Jigao Luo, Xiangyu Wang, Jiquan Long, Xiao Yan, Zheng Bian, Jiarui Luo, Shengjun Li, Chengming Li

Competition Background

Motivation

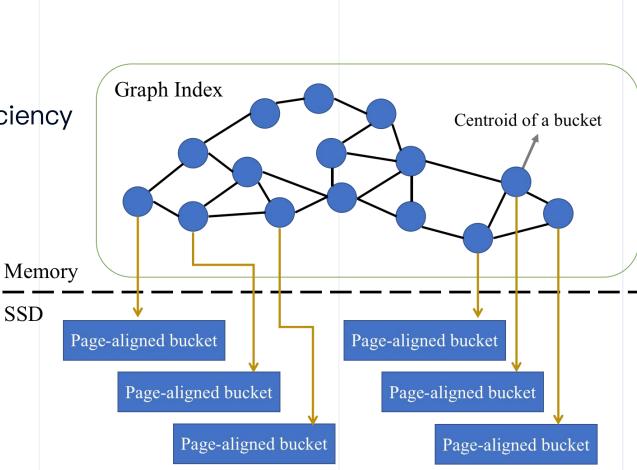
- Fast data growth
- Lower data management cost
- Moderate performance degradation

Competition Requirements

- Billion–scale vector datasets (93GB~745GB)
- Search: 1500+QPS
- Index building: 4 days per dataset
- Search Machine: 8 vCPU, 64 GB RAM, 1 TB SSD
- Index Machine: 64 vCPU, 128 GB RAM, 4 TB SSD

Solution Overview

Data storage in SSD

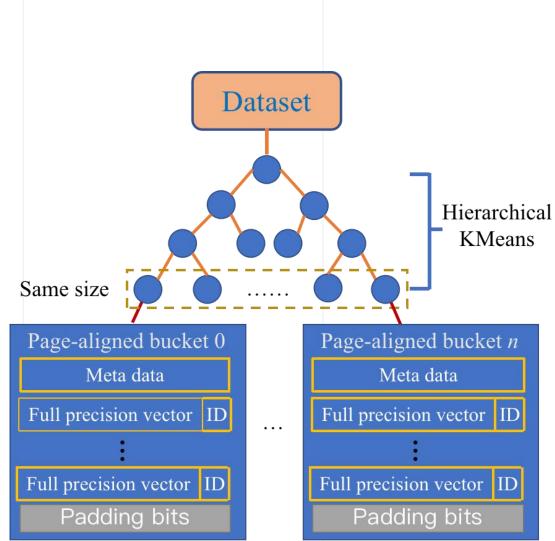

- Assign vectors to buckets
- Buckets are page-aligned for read efficiency

Maintain bucket graph in memroy

- Represent each bucket with its centroid
- Organize centroids in a graph index

Vector search

- Find related buckets through graph search
- Fetch these buckets from SSD for scan



Assign vectors to buckets

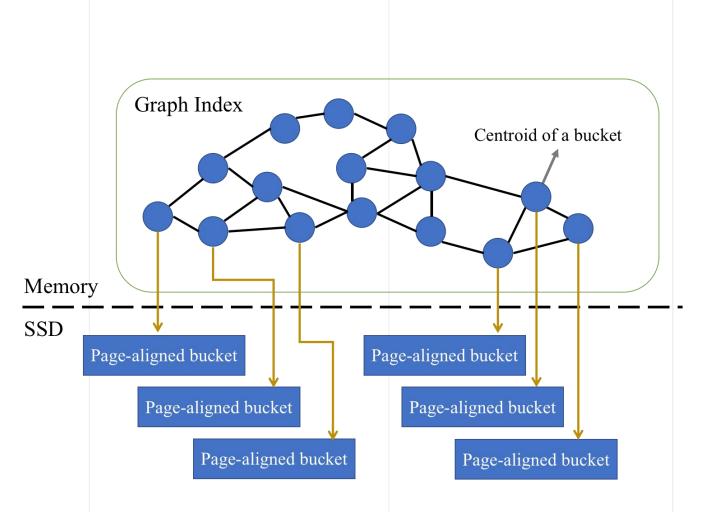
- Target
 - Assign similar vectors into the same bucket

Key consideration

- Efficient read for SSD
- Fast processing
- Our choice:
 - Hierachical KMeans
 - Page-aligned bucket size (4KB-8KB)

Index building

• Target

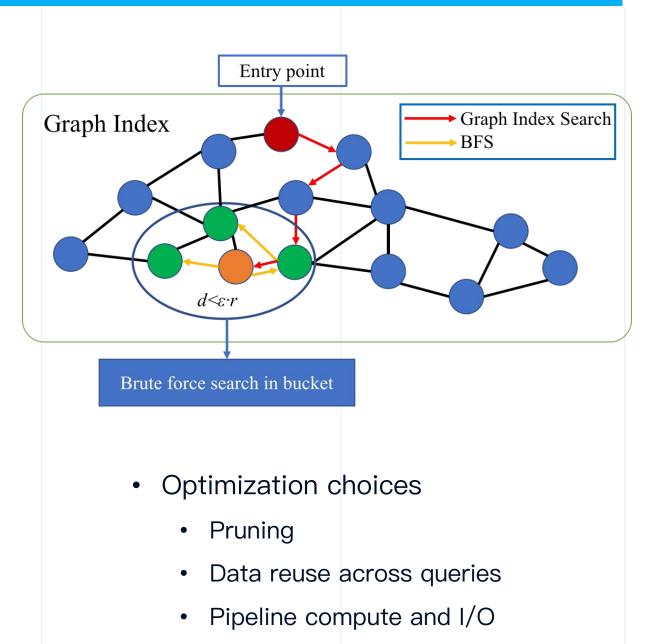

• Quickly find query-related buckets

Key consideration

- Accuracy
- Efficiency
- Fit into memory

Our choice

- Graph index
- Map centroid to integer vectors


Vector Search

Range Search

- Search graph index to find a small set of seed buckets
- Find other related buckets from seed buckets with BFS until reaching range radius
- 3. Brute-force scan related buckets

KNN Search

- Search graph index to find related buckets
- 2. Brute-force scan related buckets

Conclusion

• Summary

- Inverted files with a graph index
- Hierachical KMeans to speedup training
- Page-aligned files to improve disk read efficiency
- Results
 - Works better on range search dataset
 - Representativeness of centroids for range/KNN search queries

Dataset	ssnpp-1B	text2image-1B	msspacev-1B
Recall@1500QPS(ours)	0.885(0.723↑)	0.495(0.007↑)	0.760(0.14↓)
Index building time(ours)	12 hrs	28 hrs	7 hrs
Recall@1500QPS(baseline)	0.162	0.488	0.901

Future directions

- Uniformed index to handle both range search and KNN search
- Analyze and exploit data hotness in queries
- Vector search with heterogeneous device/storage(NVM/SSD/GPU/FPGA)
- Distributed search algorithms
- Better understand datasets and indexes
- Automated index type/parameter recommendation
- Learned index for vectors
- Efficient vector search with attribute filtering
- Multi-modal information retrieval

About Zilliz

ZILLIZ

Vision

Build a data infrastructure that could help people accelerate AI adoptions in their organizations

Open-source Projects

Milvus ٠

Cloud native vector database for unstructured data

- https://github.com/milvus-io/milvus
- @milvusio

Towhee •

 \Box

X2Vec: encode unstructured data into embeddings

- https://hub.towhee.io/
 - https://github.com/towhee-io/towhee

@towheeio

Thank You

xiaomeng.yi@zilliz.com

https://www.linkedin.com/in/xiaomeng-yi-10b998a5/

